Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(25): 10834-10841, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37335022

RESUMEN

With the study of Janus monolayer transition metal dichalcogenides, in which one of the two chalcogen layers is replaced by another type of chalcogen atom, research on two-dimensional materials is advancing into new areas. Yet only little is known about this new kind of material class, mainly due to the difficult synthesis. In this work, we synthesize MoSSe monolayers from exfoliated samples and compare their Raman signatures with density functional theory calculations of phonon modes that depend in a nontrivial way on doping and strain. With this as a tool, we can infer limits for the possible combinations of strain and doping levels. This reference data can be applied to all MoSSe Janus samples in order to quickly estimate their strain and doping, providing a reliable tool for future work. In order to narrow down the results for our samples further, we analyze the temperature-dependent photoluminescence spectra and time-correlated single-photon counting measurements. The lifetime of Janus MoSSe monolayers exhibits two decay processes with an average total lifetime of 1.57 ns. Moreover, we find a strong trion contribution to the photoluminescence spectra at low temperature which we attribute to excess charge carriers, corroborating our ab initio calculations.


Asunto(s)
Briófitas , Calcógenos , Teoría Funcional de la Densidad , Fonones , Frío
2.
Phys Rev Lett ; 130(12): 126203, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027849

RESUMEN

The coupling energies between the buckled dimers of the Si(001) surface were determined through analysis of the anisotropic critical behavior of its order-disorder phase transition. Spot profiles in high-resolution low-energy electron diffraction as a function of temperature were analyzed within the framework of the anisotropic two-dimensional Ising model. The validity of this approach is justified by the large ratio of correlation lengths, ξ_{∥}^{+}/ξ_{⊥}^{+}=5.2 of the fluctuating c(4×2) domains above the critical temperature T_{c}=(190.6±10) K. We obtain effective couplings J_{∥}=(-24.9±1.3) meV along the dimer rows and J_{⊥}=(-0.8±0.1) meV across the dimer rows, i.e., antiferromagneticlike coupling of the dimers with c(4×2) symmetry.

3.
J Chem Phys ; 155(15): 154801, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686041

RESUMEN

Real-time time-dependent density functional theory (RT-TDDFT) is an attractive tool to model quantum dynamics by real-time propagation without the linear response approximation. Sharing the same technical framework of RT-TDDFT, imaginary-time time-dependent density functional theory (it-TDDFT) is a recently developed robust-convergence ground state method. Presented here are high-precision all-electron RT-TDDFT and it-TDDFT implementations within a numerical atom-centered orbital (NAO) basis function framework in the FHI-aims code. We discuss the theoretical background and technical choices in our implementation. First, RT-TDDFT results are validated against linear-response TDDFT results. Specifically, we analyze the NAO basis sets' convergence for Thiel's test set of small molecules and confirm the importance of the augmentation basis functions for adequate convergence. Adopting a velocity-gauge formalism, we next demonstrate applications for systems with periodic boundary conditions. Taking advantage of the all-electron full-potential implementation, we present applications for core level spectra. For it-TDDFT, we confirm that within the all-electron NAO formalism, it-TDDFT can successfully converge systems that are difficult to converge in the standard self-consistent field method. We finally benchmark our implementation for systems up to ∼500 atoms. The implementation exhibits almost linear weak and strong scaling behavior.

4.
J Chem Phys ; 155(4): 044707, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340398

RESUMEN

A detailed study of the adsorption structure of self-assembled monolayers of 4-nitrothiophenol on the Au(111) surface was performed from a theoretical perspective via first-principles density functional theory calculations and experimentally by Raman and vibrational sum frequency spectroscopy (vSFS) with an emphasis on the molecular orientation. Simulations-including an explicit van der Waals (vdW) description-for different adsorbate structures, namely, for (3×3), (2 × 2), and (3 × 3) surface unit cells, reveal a significant tilting of the molecules toward the surface with decreasing coverage from 75° down to 32° tilt angle. vSFS suggests a tilt angle of 50°, which agrees well with the one calculated for a structure with a coverage of 0.25. Furthermore, calculated vibrational eigenvectors and spectra allowed us to identify characteristic in-plane (NO2 scissoring) and out-of-plane (C-H wagging) modes and to predict their strength in the spectrum in dependence of the adsorption geometry. We additionally performed calculations for biphenylthiol and terphenylthiol to assess the impact of multiple aromatic rings and found that vdW interactions are significantly increasing with this number, as evidenced by the absorption energy and the molecule adopting a more upright-standing geometry.

5.
J Phys Condens Matter ; 33(31)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34034249

RESUMEN

Using first-principles calculations, functionalization of the monolayer-GaS crystal structure through N or Cr-doping at all possible lattice sites has been investigated. Our results show that pristine monolayer-GaS is an indirect-bandgap, non-magnetic semiconductor. The bandgap can be tuned and a magnetic moment (MM) can be induced by the introduction of N or Cr atomic anion/cation doping in monolayer GaS. For instance, the intrinsic character of monolayer GaS can be changed by substitution of N for the S-site to p-type, while substitution of Cr at the S-site or Ga-site induces half-metallicity at sufficiently high concentrations. The defect states are located in the electronic bandgap region of the GaS monolayer. These findings help to extend the application of monolayer-GaS structures in nano-electronics and spintronics. Since the S-sites at the surface are more easily accessible to doping in experiment, we chose the S-site for further investigations. Finally, we perform calculations with ferromagnetic (FM) and antiferromagnetic (AFM) alignment of the MMs at the dopants. For pairs of impurities of the same species at low concentrations we find Cr atoms to prefer the FM state, while N atoms prefer the AFM state, both for impurities on opposite surfaces of the GaS monolayer and for impurities sharing a common Ga neighbor sitting at the same surface. Extending our study to higher concentrations of Cr atoms, we find that clusters of four Cr atoms prefer AFM coupling, whereas the FM coupling is retained for Cr atoms at larger distance arranged on a honeycomb lattice. For the latter arrangement, we estimate the FM Curie temperatureTCto be 241 K. We conclude that the Cr-doped monolayer-GaS crystal structure offers enhanced electronic and magnetic properties and is an appealing candidate for spintronic devices operating close to room temperature.

6.
MMW Fortschr Med ; 161(Suppl 4): 9-14, 2019 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-30895512

RESUMEN

BACKGROUND: The prevalence of hypertension, hypacusis and balance disorders will increase due to demographic change and thus represent an increasing public health problem. OBJECTIVE: To determine the point prevalence of the diseases in focus outside the classical medical setting. METHOD: At the "Bavarian Central Agriculture Festival", on the margins of the Oktoberfest 2016, visitors were offered a free health check with three health stations (blood pressure measurement, hearing test, balance test). By means of standardized examinations, the prevalence of the diseases was recorded. RESULTS: 1,727 people participated in the blood pressure measurement, 510 in the hearing test and 1,320 in the balance test. At all study sites, an increase in prevalence was observed with increasing age. Overall, the prevalence of hypertensive blood pressure values (> 140/> 90 mmHg) was 23.6%, with a high rate of 30.8% among over-65s. In the hearing test, 41.6% of all participants had a low-grade (20-40 dB) and 15.5% a higher-grade (> 40 dB) hypacusis. A balance value in the normal range was achieved by only 25.2% of the participants. CONCLUSION: The prevalence of the investigated diseases was very high, especially older men were more often affected by these health problems. Overall, there is a large primary and secondary prevention potential for the prevention and early treatment of the diseases. In order to increase the use, it would be possible in particular to consider expanding access to prevention programs outside of classic medical settings.


Asunto(s)
Trastornos de la Audición , Hipertensión , Equilibrio Postural/fisiología , Salud Pública , Adulto , Anciano , Presión Sanguínea , Determinación de la Presión Sanguínea/métodos , Femenino , Trastornos de la Audición/diagnóstico , Trastornos de la Audición/epidemiología , Trastornos de la Audición/prevención & control , Pruebas Auditivas/métodos , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/prevención & control , Masculino , Persona de Mediana Edad , Prevalencia
7.
Front Chem ; 7: 106, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918889

RESUMEN

When density functional theory is used to describe the electronic structure of periodic systems, the application of Bloch's theorem to the Kohn-Sham wavefunctions greatly facilitates the calculations. In this paper of the series, the concepts needed to model infinite systems are introduced. These comprise the unit cell in real space, as well as its counterpart in reciprocal space, the Brillouin zone. Grids for sampling the Brillouin zone and finite k-point sets are discussed. For metallic systems, these tools need to be complemented by methods to determine the Fermi energy and the Fermi surface. Various schemes for broadening the distribution function around the Fermi energy are presented and the approximations involved are discussed. In order to obtain an interpretation of electronic structure calculations in terms of physics, the concepts of bandstructures and atom-projected and/or orbital-projected density of states are useful. Aspects of convergence with the number of basis functions and the number of k-points need to be addressed specifically for each physical property. The importance of this issue will be exemplified for force constant calculations and simulations of finite-temperature properties of materials. The methods developed for periodic systems carry over, with some reservations, to less symmetric situations by working with a supercell. The chapter closes with an outlook to the use of supercell calculations for surfaces and interfaces of crystals.

8.
J Phys Condens Matter ; 30(19): 195805, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29565262

RESUMEN

The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F-Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

9.
Nano Lett ; 17(6): 3634-3640, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28537733

RESUMEN

We study the surface diffusion and alloying of Sb into GaAs nanowires (NWs) with controlled axial stacking of wurtzite (Wz) and zinc blende (Zb) crystal phases. Using atomically resolved scanning tunneling microscopy, we find that Sb preferentially incorporates into the surface layer of the {110}-terminated Zb segments rather than the {112̅0}-terminated Wz segments. Density functional theory calculations verify the higher surface incorporation rate into the Zb phase and find that it is related to differences in the energy barrier of the Sb-for-As exchange reaction on the two surfaces. These findings demonstrate a simple processing-free route to compositional engineering at the monolayer level along NWs.

10.
J Chem Phys ; 146(3): 034702, 2017 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-28109219

RESUMEN

Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

11.
ACS Nano ; 8(12): 12346-55, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25406069

RESUMEN

We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between valence and conduction band edges, the local vacuum levels, and geometric relaxations to the few-millielectronvolt and few-picometer levels, respectively. Surface and bulk density functional theory calculations agree well with the experimental findings and are used to interpret the results, allowing us to obtain information on both surface and bulk electronic structure. We can thus exclude several previously proposed explanations for the observed differences in conductivity of Wz-Zb NW devices. Instead, fundamental structural differences at the atomic scale and nanoscale that we observed between NW surface facets can explain the device behavior.

12.
Nanotechnology ; 25(14): 145204, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24632943

RESUMEN

With the help of density functional calculations using the HSE and PBE functionals, it is shown that incorporation of nitrogen into ZnO nanoparticles is energetically less costly compared to ZnO bulk, due to charge transfer between Zn dangling bonds and the NO impurity. Neutral NO results after full passivation of the doped nanoparticles by a treatment with atomic hydrogen. A nanocomposite made from such ZnO particles could show thermally activated p-type hopping conductivity.

13.
J Chem Phys ; 138(23): 234702, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23802971

RESUMEN

Hybrid functionals and empirical correction schemes are compared to conventional semi-local density functional theory (DFT) calculations in order to assess the predictive power of these methods concerning the formation energy and the charge transfer level of impurities in the wide-gap semiconductor ZnO. While the generalized gradient approximation fails to describe the electronic structure of the N impurity in ZnO correctly, methods that widen the band gap of ZnO by introducing additional non-local potentials yield the formation energy and charge transfer level of the impurity in reasonable agreement with hybrid functional calculations. Summarizing the results obtained with different methods, we corroborate earlier findings that the formation of substitutional N impurities at the oxygen site in ZnO from N atoms is most likely slightly endothermic under oxygen-rich preparation conditions, and introduces a deep level more than 1 eV above the valence band edge of ZnO. Moreover, the comparison of methods elucidates subtle differences in the predicted electronic structure, e.g., concerning the orientation of unoccupied orbitals in the crystal field and the stability of the charged triplet state of the N impurity. Further experimental or theoretical analysis of these features could provide useful tests for validating the performance of DFT methods in their application to defects in wide-gap materials.

14.
Nano Lett ; 12(2): 943-8, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22268683

RESUMEN

The energetics of Ga, As, and GaAs species on the Au(111) surface (employed as a model for Au nanoparticles) is investigated by means of density functional calculations. Apart from formation of the compound Au(7)Ga(2), Ga is found to form a surface alloy with gold with comparable ΔH ~ -0.5 eV for both processes. Dissociative adsorption of As(2) is found to be exothermic by more than 2 eV on both clean Au(111) and AuGa surface alloys. The As-Ga species formed by reaction of As with the surface alloy is sufficiently stable to cover the surface of an Au particle in vacuo in contact with a GaAs substrate. The results of the calculations are interpreted in the context of Au-catalyzed growth of GaAs nanowires. We argue that arsenic is supplied to the growth zone of the nanowire mainly by impingement of molecules on the gold particle and identify a regime of temperatures and As(2) partial pressures suitable for Au-catalyzed nanowire growth in molecular beam epitaxy.


Asunto(s)
Arsenicales/química , Galio/química , Oro/química , Nanopartículas del Metal/química , Nanocables/química , Teoría Cuántica , Catálisis
15.
J Chem Phys ; 135(11): 114506, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21950870

RESUMEN

The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.

16.
Phys Rev Lett ; 105(2): 025702, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20867716

RESUMEN

Thin-film solar cells with CuIn(x)Ga(1-x)Se2 (CIGS) absorber are still far below their efficiency limit, although lab cells already reach 20.1%. One important aspect is the homogeneity of the alloy. Large-scale simulations combining Monte Carlo and density functional calculations show that two phases coexist in thermal equilibrium below room temperature. Only at higher temperatures, CIGS becomes more and more a homogeneous alloy. A larger degree of inhomogeneity for Ga-rich CIGS persists over a wide temperature range, which contributes to the observed low efficiency of Ga-rich CIGS solar cells.

17.
J Chem Phys ; 133(5): 054505, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20707540

RESUMEN

Density functional theory (DFT) calculations are used to determine the vibrational modes of hydrogen adsorbed on graphene in the low-coverage limit. Both the calculated adsorption energy of a H atom of 0.8 eV and calculated C-H stretch vibrational frequency of 2552 cm(-1) are unusually low for hydrocarbons, but in agreement with data from electron energy loss spectroscopy on hydrogenated graphite. The clustering of two adsorbed H atoms observed in scanning tunneling microscopy images shows its fingerprint also in our calculated spectra. The energetically preferred adsorption on different sublattices correlates with a blueshift of the C-H stretch vibrational modes in H adatom clusters. The C-H bending modes are calculated to be in the 1100 cm(-1) range, resonant with the graphene phonons. Moreover, we use our previously developed methods to calculate the relaxation of the C-H stretch mode via vibration-phonon interaction, using the Born-Oppenheimer surface for all local modes as obtained from the DFT calculations. The total decay rate of the H stretch into other H vibrations, thereby creating or annihilating one graphene phonon, is determined from Fermi's golden rule. Our calculations using the matrix elements derived from DFT calculations show that the lifetime of the H stretch mode on graphene is only several picoseconds, much shorter than on other semiconductor surfaces such as Ge(001) and Si(001).


Asunto(s)
Carbono/química , Simulación por Computador , Hidrógeno/química , Adsorción , Propiedades de Superficie , Vibración
18.
Phys Rev Lett ; 105(26): 267203, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21231710

RESUMEN

It is shown that substitution of C or N for O recently proposed as a way to create ferromagnetism in otherwise nonmagnetic oxide insulators is curtailed by formation of impurity pairs, and the resultant C2 spin=1 dimers as well as the isoelectronic N2(2+) interact antiferromagnetically in p-type MgO. For C-doped ZnO, however, we demonstrate using the Heyd-Scuseria-Ernzerhof hybrid functional that a resonance of the spin-polarized C2 ppπ* states with the host conduction band results in a long-range ferromagnetic interaction. Magnetism of open-shell impurity molecules is proposed as a possible route to d(0)-ferromagnetism in oxide spintronic materials.

19.
J Chem Phys ; 131(12): 124502, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19791889

RESUMEN

Combining first-principles calculations and sum frequency generation spectroscopy, we elucidate the microscopic details in the relaxation of the stretching vibration of hydrogen adsorbed on Ge(100). The dominant decay channels involve energy transfer from the stretching to the hydrogen bending modes, with the remaining energy difference being transferred to or from substrate phonons. The coupling between stretching and bending modes is treated from first principles using the calculated multidimensional adiabatic potential energy surface, while the coupling to phonons is treated in perturbation theory. For a surface solely saturated with light hydrogen, we calculate a vibrational lifetime of 1.56 ns at 400 K, in good agreement with experiment, and find a similar temperature dependence of the lifetime in both experiment and theory. The calculations show that the stretching energy dissipates to a vibrational state involving four bending quanta of hydrogen, concurrently absorbing a thermally excited surface phonon related to the Ge dimer rocking mode. For a Ge surface saturated with a mixture of H and D, our experiments find that the relaxation rate of the H stretching vibration is markedly increased when compared to a surface saturated with H only. Experimentally, a single decay is observed although H and D atoms will statistically pair on the surface dimers. The vibrational lifetime of the Ge-H stretching mode is up to six times shorter in the presence of adsorbed D atoms. The calculated relaxation rates are consistent with the experimentally observed trend. The theoretical analysis shows that the breaking of symmetry within the Ge surface dimer due to coadsorption of D opens up further relaxation channels that involve absorption or emission of a substrate phonon at various energies. Moreover, the calculations predict an even shorter vibrational lifetime of the Ge-D stretch mode due to efficient coupling to the Ge dimer rocking mode.

20.
Phys Rev Lett ; 103(4): 046802, 2009 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19659380

RESUMEN

A computational study of the epitaxial Co_{2}MnSi(001)/MgO(001) interface relevant to tunneling magnetoresistive devices is presented. Employing ab initio atomistic thermodynamics, we show that the Co or MnSi planes of bulk-terminated Co_{2}MnSi form stable interfaces, while pure Si or pure Mn termination requires nonequilibrium conditions. Except for the pure Mn interface, the half-metallic property of bulk Co_{2}MnSi is disrupted by interface bands. Even so, at homogeneous Mn or Co interfaces these bands contribute little to the minority-spin conductance through an MgO barrier, and hence such terminations could perform strongly in tunneling magnetoresistive devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...