Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibodies (Basel) ; 12(3)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37753968

RESUMEN

Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the constant region (Fc) to Fcγ receptors (FcγR), which allow immune cells to attack and kill target cells using a variety of mechanisms. However, for some applications, including T-cell-engaging bispecifics, this effector function is typically undesired. Mutations within the lower hinge and the second constant domain (CH2) of IgG1 that comprise the FcγR binding interface reduce or eliminate effector function ("Fc silencing") while retaining binding to the neonatal Fc receptor (FcRn), important for normal antibody pharmacokinetics (PKs). Comprehensive profiling of biophysical developability properties would benefit the choice of constant region variants for development. Here, we produce a large panel of representative mutations previously described in the literature and in many cases in clinical or approved molecules, generate select combinations thereof, and characterize their binding and biophysical properties. We find that some commonly used CH2 mutations, including D265A and P331S, are effective in reducing binding to FcγR but significantly reduce stability, promoting aggregation, particularly under acidic conditions commonly employed in manufacturing. We highlight mutation sets that are particularly effective for eliminating Fc effector function with the retention of WT-like stability, including L234A, L235A, and S267K (LALA-S267K), L234A, L235E, and S267K (LALE-S267K), L234A, L235A, and P329A (LALA-P329A), and L234A, L235E, and P329G (LALE-P329G).

2.
MAbs ; 15(1): 2189974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36991534

RESUMEN

Bispecific antibodies continue to represent a growth area for antibody therapeutics, with roughly a third of molecules in clinical development being T-cell engagers that use an anti-CD3 binding arm. CD3 antibodies possessing cross-reactivity with cynomolgus monkey typically recognize a highly electronegative linear epitope at the extreme N-terminus of CD3 epsilon (CD3ε). Such antibodies have high isoelectric points and display problematic polyreactivity (correlated with poor pharmacokinetics for monospecific antibodies). Using insights from the crystal structure of anti-Hu/Cy CD3 antibody ADI-26906 in complex with CD3ε and antibody engineering using a yeast-based platform, we have derived high-affinity CD3 antibody variants with very low polyreactivity and significantly improved biophysical developability. Comparison of these variants with CD3 antibodies in the clinic (as part of bi- or multi-specifics) shows that affinity for CD3 is correlated with polyreactivity. Our engineered CD3 antibodies break this correlation, forming a broad affinity range with no to low polyreactivity. Such antibodies will enable bispecifics with improved pharmacokinetic and safety profiles and suggest engineering solutions that will benefit the large and growing sector of T-cell engagers.


Asunto(s)
Anticuerpos Biespecíficos , Animales , Macaca fascicularis , Linfocitos T , Complejo CD3 , Muromonab-CD3
3.
Sci Transl Med ; 15(688): eadg2783, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947596

RESUMEN

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.


Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación , Anticuerpos Monoclonales/uso terapéutico
4.
medRxiv ; 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36299436

RESUMEN

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against COVID-19. However, the induction of multiple layers of immunity following SARS-CoV-2 exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life extended monoclonal antibody (adintrevimab) provides approximately 50% protection against symptomatic COVID-19 in SARS-CoV-2-naive adults at low serum nAb titers on the order of 1:30. Vaccine modeling supports a similar 50% protective nAb threshold, suggesting low levels of serum nAb can protect in both monoclonal and polyclonal settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for approximately 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as an alternative or supplement to vaccination in high-risk populations.

5.
MAbs ; 11(5): 803-808, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31107637

RESUMEN

Two recent publications out of the same research laboratory report on structure-based in silico design of antibodies against viral targets without sequence disclosure. Cross-referencing the published data to patent databases, we established the sequence identity of said computationally designed antibodies. In both cases, the antibodies align with high sequence identity to previously reported antibodies of the same specificity. This clear underlying sequence relationship, which is far closer than the antibody templates reported to seed the computational design, suggests an alternative origin of the computationally designed antibodies. The lack of both reproducible computational algorithms and of output sequences in the initial publications obscures the relationship to previously reported antibodies, and sows doubt as to the genesis narrative described therein.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Gripe Humana/inmunología , Virus Zika/inmunología , Algoritmos , Secuencia de Aminoácidos , Biología Computacional , Simulación por Computador , Epítopos/inmunología , Humanos
6.
Proc Natl Acad Sci U S A ; 114(5): 944-949, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096333

RESUMEN

Antibodies are a highly successful class of biological drugs, with over 50 such molecules approved for therapeutic use and hundreds more currently in clinical development. Improvements in technology for the discovery and optimization of high-potency antibodies have greatly increased the chances for finding binding molecules with desired biological properties; however, achieving drug-like properties at the same time is an additional requirement that is receiving increased attention. In this work, we attempt to quantify the historical limits of acceptability for multiple biophysical metrics of "developability." Amino acid sequences from 137 antibodies in advanced clinical stages, including 48 approved for therapeutic use, were collected and used to construct isotype-matched IgG1 antibodies, which were then expressed in mammalian cells. The resulting material for each source antibody was evaluated in a dozen biophysical property assays. The distributions of the observed metrics are used to empirically define boundaries of drug-like behavior that can represent practical guidelines for future antibody drug candidates.


Asunto(s)
Anticuerpos Monoclonales , Descubrimiento de Drogas/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Fenómenos Biofísicos , Aprobación de Drogas , Células HEK293 , Humanos , Inmunoglobulina G/química
7.
Science ; 351(6277): 1078-83, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26912366

RESUMEN

Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/uso terapéutico , Formación de Anticuerpos , Complejo Antígeno-Anticuerpo/química , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/uso terapéutico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/terapia , Humanos , Inmunización Pasiva , Ratones , Sobrevivientes , Donantes de Tejidos , Proteínas del Envoltorio Viral/química , Virión/inmunología
8.
MAbs ; 7(1): 243-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25523282

RESUMEN

Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/inmunología , Proteínas Hemolisinas/inmunología , Inmunoglobulina G/inmunología , Leucocidinas/inmunología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Antibacterianos/química , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos , Proteínas Bacterianas/química , Línea Celular , Proteínas Hemolisinas/química , Humanos , Inmunoglobulina G/química , Leucocidinas/química , Conejos , Staphylococcus aureus/química
9.
MAbs ; 6(3): 577-618, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24589717

RESUMEN

The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.


Asunto(s)
Anticuerpos/química , Anticuerpos/uso terapéutico , Animales , Anticuerpos/genética , Evolución Molecular Dirigida , Diseño de Fármacos , Humanos , Inmunoterapia , Neoplasias/terapia , Ingeniería de Proteínas , Sociedades Científicas , Biología de Sistemas
10.
Protein Eng Des Sel ; 26(10): 663-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24046438

RESUMEN

Low expression, poor solubility, and polyspecificity are significant obstacles that have impeded the development of antibodies discovered from in vitro display libraries. Current biophysical characterization tools that identify these 'developability' problems are typically only applied after the discovery process, and thus limited to perhaps a few hundred candidates. We report a flow cytometric assay using a polyspecificity reagent (PSR) that allows for the identification and counter selection of polyspecific antibodies both during and after the selection process. The reported assay correlates well with cross-interaction chromatography, a surrogate for antibody solubility, as well as a baculovirus particle enzyme-linked immunosorbent assay, a surrogate for in vivo clearance. However, unlike these assays, PSR labeling is compatible both with screening of individual antibodies as well as selections of large antibody libraries. To this end, we demonstrate the ability to counter-select against polyspecificity while enriching for antigen affinity from a diverse antibody library, which enables simultaneous evolution of both antigen binding and superior non-target-related properties during the discovery process.


Asunto(s)
Anticuerpos/genética , Técnicas de Visualización de Superficie Celular/métodos , Citometría de Flujo , Levaduras/citología , Anticuerpos/química , Anticuerpos/inmunología , Línea Celular , Membrana Celular/metabolismo , Reacciones Cruzadas , Evolución Molecular Dirigida , Humanos , Estabilidad Proteica , Solubilidad , Temperatura
11.
ACS Nano ; 2(7): 1480-6, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19206318

RESUMEN

Herein we report the spontaneous reduction of silver ions into nanostructures by yeast surface-displayed glutamic acid (E(6)) and aspartic acid (D(6)) peptides. Light spectroscopy and electron microscopy reveal that silver ions are photoreduced in the presence of the polycarboxylic acid-containing peptides and ambient light, with an increase in reduction capability of E(6) expressing yeast over D(6) yeast. The importance of tethering peptides to a biological scaffold was inferred by observing the reduced particle forming capacity of soluble peptides with respect to corresponding yeast-displayed peptides. This principle was further extended to the M13 virus for fabrication of crystalline silver nanowires. These insights into the spontaneous reduction of metal ions on biological scaffolds should help further the formation of novel nanomaterials in biological systems.


Asunto(s)
Materiales Biocompatibles/química , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Nanoestructuras/química , Nanoestructuras/ultraestructura , Péptidos/química , Plata/química , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/métodos , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
12.
Biotechnol Bioeng ; 97(5): 1009-20, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17238208

RESUMEN

In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion. Cell detachment assays showed that cell adhesion strength correlated positively with increasing basicity of expressed peptides. Cell adhesion was also shown to be sensitive to buffer ionic strength as well as incubation with soluble peptide (with half maximal inhibition of cell binding at approximately 5 microM peptide). Next, dodecamer peptides cloned into yeast showed that lysine led to stronger interactions than arginine, and that charge distribution affected adhesion strength. We postulate binding to arise from peptide geometries that permit conformation alignment of the basic amino acids towards the surface so that the charged groups can undergo local electrostatic interactions with the surface oxide. Lastly, peptide K1 (-(GK)(6)) was cloned onto the c-terminus of maltose binding protein (MBP) and the resultant mutant protein showed a half-maximal binding at approximately 10(-7)-10(-6) M, which marked a approximately 500- to 1,000-fold binding improvement to sapphire's A-face as compared with wild-type MBP. Targeting proteins to metal oxide surfaces with peptide tags may provide a facile one-step alternative coupling chemistry for the formation of protein bioassays and biosensors.


Asunto(s)
Marcadores de Afinidad/química , Óxido de Aluminio/química , Adhesión Celular/fisiología , Materiales Biocompatibles Revestidos/química , Péptidos/química , Saccharomyces cerevisiae/fisiología , Sitios de Unión , Técnicas de Cultivo de Célula/métodos , Biblioteca de Péptidos , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Langmuir ; 21(15): 6929-33, 2005 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16008405

RESUMEN

Development of a fundamental understanding of how peptides specifically interact with inorganic material surfaces is crucial to furthering many applications in the field of nanobiotechnology. Herein, we report systematic study of peptide sequence-activity relationships for binding to II-VI semiconductors (CdS, CdSe, ZnS, ZnSe) and Au using a yeast surface display system, and we define criteria for tuning peptide affinity and specificity for these material surfaces. First, homohexapeptides of the 20 naturally occurring amino acids were engineered, expressed on yeast surface, and assayed for the ability to bind each material surface in order to define functional groups sufficient for binding. Histidine (H6) was able to mediate binding of yeast to the five materials studied, while tryptophan (W6), cysteine (C6), and methionine (M6) exhibited different levels of binding to single-crystalline ZnS and ZnSe and polycrystalline Au surfaces. The ability of neighboring amino acids to up- and down-modulate histidine binding was then evaluated by use of interdigitated peptides (XHXHXHX). While the 20 amino acids exhibited a unique fingerprint of modulation for each material, some general trends emerged. With neutral defined by alanine, up-modulation occurred with glycine, basic amino acids, and the previously defined binding amino acids histidine, tryptophan, cysteine, and methionine, and down-modulation generally occurred with acidic, polar, and hydrophobic residues. We conclude that certain amino acids directly bind the material surface while neighboring amino acids locally modulate the binding environment for the materials we studied. Therefore, by the specific placement of up- and down-modulating amino acids, material specificity can be controlled. Finally, by employing the compositional and spatial criteria developed herein, it was possible to predictively design peptide sequences with material specificity, including a multimaterial binder, a Au-specific binder, and a ZnS-specific binder, that were verified as such in the context of yeast display.


Asunto(s)
Compuestos Inorgánicos/química , Péptidos/química , Ingeniería de Proteínas , Secuencia de Aminoácidos , Secuencia de Bases , Biotecnología , Cartilla de ADN , Datos de Secuencia Molecular , Nanotecnología
14.
Acta Biomater ; 1(2): 145-54, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16701791

RESUMEN

Although promising for biomimetic materials applications, polypeptides binding inorganic material surfaces and the mechanism of their function have been difficult to characterize. This paper reports sequence-activity relationships of peptides interfacing with semiconductor CdS, and presents methodologies broadly applicable to studying peptide-solid surface interactions. We first employed yeast surface display with a human repertoire antibody library and identified rarely-occurring scFv fragments as CdS-binding polypeptides. Using our semi-quantitative cell-surface binding assay, site-directed mutational analysis, and genetic engineering we defined short distal regions of the displayed polypeptides necessary and sufficient for CdS binding. Alanine scanning mutagenesis in combination with a series of engineered polyhistidine peptides elucidated a direct relationship between histidine number and binding strength, which appeared to be further modulated by arginine and basic residues. The minimum strength of interaction was established by competition studies using soluble synthetic peptide analogs, which showed half-maximal inhibition of yeast binding to CdS at approximately 2 microM peptide. We then showed the ability of cells displaying material-specific polypeptides to form self-healing biofilms and discriminate between materials of fabricated heterostructure surfaces. Furthermore, we demonstrated the synthetic potential of the selected soluble CdS peptide in mediating aqueous synthesis of fluorescent CdS nanoparticles at room temperature. This platform may be further applied to elucidate mechanisms governing interfacial interactions and to generate material-specific reagents useful in medicine, biosensors, and bioproduction of high value inorganic materials.


Asunto(s)
Ingeniería Genética , Compuestos Inorgánicos/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Compuestos de Cadmio/química , Cartilla de ADN , Sondas Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Saccharomyces cerevisiae/química , Sulfuros/química
15.
Biotechnol Prog ; 20(3): 851-7, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15176891

RESUMEN

Nanoparticle transport through mucosal barriers is often restricted owing to mucoadhesion and the highly viscoelastic nature of mucus gels, which may limit efficient drug and gene delivery. We formulated sub-200 nm particulates from poly(d,l-lactic-co-glycolic) acid (PLGA) and the cationic surfactant dimethyldioctadecylammonium bromide (DDAB). Subsequently, anionic DNA was condensed to the surface to obtain gene carriers with transfection rates 50-fold higher than those of naked DNA in vitro. Using the method of multiple particle tracking (MPT), we measured the transport rates of dozens of individual PLGA-DDAB/DNA nanoparticles in real time in reconstituted pig gastric mucus (PGM) that possessed physiologically relevant rheological properties. The average transport rate of PLGA-DDAB/DNA nanoparticles was 10-fold higher than those of similar size polystyrene nanoparticles. Improved transport rates, stability in mucus, and ability to transfect cells make PLGA-DDAB/DNA nanoparticles candidates for mucosal DNA vaccines and gene therapy.


Asunto(s)
ADN/administración & dosificación , ADN/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Mucosa Gástrica/metabolismo , Técnicas de Transferencia de Gen , Nanoestructuras/química , Animales , Transporte Biológico Activo , Células COS , Células Cultivadas , Chlorocebus aethiops , ADN/química , Portadores de Fármacos/síntesis química , Elasticidad , Mucosa Gástrica/citología , Ácido Láctico/química , Liposomas/química , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Compuestos de Amonio Cuaternario/química , Distribución Tisular , Viscosidad
16.
Biomaterials ; 23(22): 4425-33, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12219833

RESUMEN

Inhalation is gaining increasing acceptance as a convenient, reproducible, and non-invasive method of drug delivery to the lung tissue and/or the systemic circulation. However, sustained drug release following inhalation remains elusive, due in part to the lack of appropriate materials designed specifically for use in the lungs to control the release of bioactive compounds. To address this problem, we have synthesized a new family of ether-anhydride copolymers composed entirely of FDA-approved monomers, including polyethylene glycol (PEG). Sebacic acid, a hydrophobic monomer, was copolymerized with PEG in order to produce water-insoluble polymers capable of providing continuous drug release kinetics following immersion in an aqueous environment. Various amounts of PEG (5-50% by mass) were incorporated into the backbone of the new polymers to allow tuning of particle surface properties for potentially enhanced aerosolization efficiency and to decrease particle clearance rates by phagocytosis in the deep lung. The preparation of large porous particles with these new polymers was systematically approached, utilizing central composite design, to develop improved particle physical properties for deep lung delivery. Microparticles containing model drugs were made with sizes suitable for deposition in various regions of the lung following inhalation as a dry powder. Due to such properties as surface erosion (leading to continuous drug release profiles), erosion times ranging from hours to days (allowing control over drug delivery duration), and ability to incorporate up to 50% PEG in their backbone, these new systems may also find application as "stealth" carriers for therapeutic compounds following intravenous injection.


Asunto(s)
Materiales Biocompatibles/química , Ácidos Dicarboxílicos , Sistemas de Liberación de Medicamentos , Polímeros/química , Administración por Inhalación , Anhídridos/química , Materiales Biocompatibles/farmacología , Ácidos Decanoicos/química , Éteres/química , Inyecciones , Cinética , Pulmón/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Fagocitosis , Polietilenglicoles/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...