RESUMEN
In many mammals, early survival differs between the sexes, with males proving the more fragile sex ["Fragile male (FM) hypothesis"], especially in sexually dimorphic species where males are the larger sex. Male-biased allocation (MBA) by females may offset this difference. Here, we evaluate support for the FM and MBA hypotheses using a dataset on Galapagos sea lions (Zalophus wollebaeki). We statistically model sex-specific survival as it depends on body mass and environmental conditions (sea surface temperature, SST, a correlate of marine productivity) at three developmental stages, the perinatal phase (1st month), the main lactation period (1st year), and the weaning period (2nd year). Supporting the FM hypothesis, we found that, early in life (1st month), at equal birth mass, males survived less well than females. During the remainder of the first year of life, male survival was actually less sensitive to harsh environmental conditions than that of females, contradicting the FM hypothesis and supporting the MBA hypothesis. During the second year of life, only male survival suffered with high SSTs as predicted by the FM hypothesis. At each developmental stage, observed survival rates were almost equal for both sexes, suggesting that mothers buffer against the inherent fragility of male offspring through increased allocation, thereby masking the differences in survival prospects between the sexes.
Asunto(s)
Ambiente , Modelos Biológicos , Mortalidad , Leones Marinos/fisiología , Caracteres Sexuales , Animales , Peso Corporal , Ecuador , Femenino , Funciones de Verosimilitud , Modelos Lineales , Masculino , TemperaturaRESUMEN
Five new linear acetylenic compounds, namely, pentadeca-6,8,10-triynoic acid (1), octadeca-8,10,12-triynoic acid (2), trans-pentadec-10-en-6,8-diynoic acid (3), cis-hexadec-11-en-7,9-diynoic acid (4), and cis-octadec-12-en-7,9-diynoic acid (5), were isolated from the bark of Heisteria acuminata by bioassay-guided fractionation, using cyclooxygenase (COX) and 5-lipoxygenase (5-LO) assays as models for antiinflammatory activity. The structures of compounds 1-5 were established by NMR, MS, IR, and Raman spectroscopy. These isolated compounds were found to be potent inhibitors of COX. Compounds 4 and 5 were the most potent inhibitors of 5-LO, whereas the other compounds only showed a weak inhibition at the same concentration.