Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomark Res ; 12(1): 44, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679739

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS: A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS: From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS: Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36522170

RESUMEN

OBJECTIVES: Rippling muscle disease (RMD) is characterized by muscle stiffness, muscle hypertrophy, and rippling muscle induced by stretching or percussion. Hereditary RMD is due to sequence variants in the CAV3 and PTRF/CAVIN1 genes encoding Caveolin-3 or Cavin-1, respectively; a few series of patients with acquired autoimmune forms of RMD (iRMD) associated with AChR antibody-positive myasthenia gravis and/or thymoma have also been described. Recently, MURC/caveolae-associated protein 4 (Cavin-4) autoantibody was identified in 8 of 10 patients without thymoma, highlighting its potential both as a biomarker and as a triggering agent of this pathology. Here, we report the case of a patient with iRMD-AchR antibody negative associated with thymoma. METHODS: We suspected a paraneoplastic origin and investigated the presence of specific autoantibodies targeting muscle antigens through a combination of Western blotting and affinity purification coupled with mass spectrometry-based proteomic approaches. RESULTS: We identified circulating MURC/Cavin-4 autoantibodies and found strong similarities between histologic features of the patient's muscle and those commonly reported in caveolinopathies. Strikingly, MURC/Cavin-4 autoantibody titer strongly decreased after tumor resection and immunotherapy correlating with complete disappearance of the rippling phenotype and full patient remission. DISCUSSION: MURC/Cavin-4 autoantibodies may play a pathogenic role in paraneoplastic iRMD associated with thymoma.


Asunto(s)
Miastenia Gravis , Timoma , Neoplasias del Timo , Humanos , Timoma/complicaciones , Autoanticuerpos , Proteómica , Miastenia Gravis/complicaciones , Miastenia Gravis/diagnóstico , Neoplasias del Timo/complicaciones , Neoplasias del Timo/diagnóstico
3.
Elife ; 102021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860155

RESUMEN

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.


Asunto(s)
Fórnix/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Semaforinas/genética , Transducción de Señal , Animales , Femenino , Fórnix/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681731

RESUMEN

Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10-48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.


Asunto(s)
Alcohol Deshidrogenasa/sangre , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteómica/métodos , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cromatografía Líquida de Alta Presión , Biología Computacional , Humanos , Relación Normalizada Internacional , Límite de Detección , Espectrometría de Masas en Tándem
5.
Bioinformatics ; 37(17): 2770-2771, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33538793

RESUMEN

SUMMARY: Many factors can influence results in clinical research, in particular bias in the distribution of samples prior to biochemical preparation. Well Plate Maker is a user-friendly application to design single- or multiple-well plate assays. It allows multiple group experiments to be randomized and therefore helps to reduce possible batch effects. Although primarily fathered to optimize the design of clinical sample analysis by high throughput mass spectrometry (e.g. proteomics or metabolomics), it includes multiple options to limit edge-of-plate effects, to incorporate control samples or to limit cross-contamination. It thus fits the constraints of many experimental fields. AVAILABILITY AND IMPLEMENTATION: Well Plate Maker is implemented in R and available at Bioconductor repository (https://bioconductor.org/packages/wpm) under the open source Artistic 2.0 license. In addition to classical scripting, it can be used through a graphical user interface, developed with Shiny technology.

6.
BMC Bioinformatics ; 22(1): 68, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579189

RESUMEN

BACKGROUND: The clustering of data produced by liquid chromatography coupled to mass spectrometry analyses (LC-MS data) has recently gained interest to extract meaningful chemical or biological patterns. However, recent instrumental pipelines deliver data which size, dimensionality and expected number of clusters are too large to be processed by classical machine learning algorithms, so that most of the state-of-the-art relies on single pass linkage-based algorithms. RESULTS: We propose a clustering algorithm that solves the powerful but computationally demanding kernel k-means objective function in a scalable way. As a result, it can process LC-MS data in an acceptable time on a multicore machine. To do so, we combine three essential features: a compressive data representation, Nyström approximation and a hierarchical strategy. In addition, we propose new kernels based on optimal transport, which interprets as intuitive similarity measures between chromatographic elution profiles. CONCLUSIONS: Our method, referred to as CHICKN, is evaluated on proteomics data produced in our lab, as well as on benchmark data coming from the literature. From a computational viewpoint, it is particularly efficient on raw LC-MS data. From a data analysis viewpoint, it provides clusters which differ from those resulting from state-of-the-art methods, while achieving similar performances. This highlights the complementarity of differently principle algorithms to extract the best from complex LC-MS data.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Péptidos , Proteómica , Cromatografía Liquida , Compresión de Datos , Espectrometría de Masas , Péptidos/química , Proteómica/métodos
7.
J Cell Sci ; 134(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495358

RESUMEN

Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.


Asunto(s)
Citoesqueleto , Proteómica , Transducción de Señal , Familia-src Quinasas , Animales , Células Cultivadas , Simulación de Dinámica Molecular , Fosforilación , Dominios Homologos src , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
8.
Proteomics ; 21(5): e2000152, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33459490

RESUMEN

Biotherapeutics, molecules produced from biological systems, require rigorous purification steps to remove impurities including host cell proteins (HCPs). Regulatory guidelines require manufacturers to monitor process-related impurities along the purification workflow. Mass spectrometry (MS) has recently been considered as a complementary method to the well-established ELISA for HCPs quantification, since it has the advantage of unambiguously identifying individual HCP. In this study, we developed an innovative standard dedicated to MS-based HCP profiling analysis in order to monitor the consistency of viral vaccine intermediate purification samples. This standard, termed the HCP-PROFILER standard, is composed of a water-soluble bead (READYBEADS technology) which, after being added into the sample, releases unlabeled peptides in controlled amounts. The standard meets three desired criteria: (1) it is composed of multiple peptides, at different concentration levels, allowing construction of a calibration curve covering the dynamic range of HCPs present in the target sample, ensuring quantification accuracy; (2) it demonstrates high batch-to-batch reproducibility, ensuring quantification robustness and consistency over time; and (3) it is easy to use and avoids user-induced analytical biases. In this study, we present the use of the HCP-PROFILER standard for vaccine batches comparison and downstream process performance studies.


Asunto(s)
Espectrometría de Masas en Tándem , Vacunas Virales , Animales , Anticuerpos Monoclonales , Células CHO , Cromatografía Liquida , Cricetinae , Cricetulus , Reproducibilidad de los Resultados
9.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399853

RESUMEN

Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. ß1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with ß1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.


Asunto(s)
Podosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Adhesión Celular , Cisteína/metabolismo , Ácido Ditionitrobenzoico , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Integrina beta1/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Modelos Biológicos , Miosina Tipo I/metabolismo , Transporte de Proteínas , Células RAW 264.7
10.
J Mol Biol ; 432(24): 166690, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33289667

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterium of which the main virulence factor is the Type III Secretion System. The ATPase of this machinery, PscN (SctN), is thought to be localized at the base of the secretion apparatus and to participate in the recognition, chaperone dissociation and unfolding of exported T3SS proteins. In this work, a protein-protein interaction ELISA revealed the interaction of PscN with a wide range of exported T3SS proteins including the needle, translocator, gate-keeper and effector. These interactions were further confirmed by Microscale Thermophoresis that also indicated a preferential interaction of PscN with secreted proteins or protein-chaperone complex rather than with chaperones alone, in line with the release of the chaperones in the bacterial cytoplasm after the dissociation from their exported proteins. Moreover, we suggest a new role of the gate-keeper complex and the ATPase in the regulation of early substrates recognition by the T3SS. This finding sheds a new light on the mechanism of secretion switching from early to middle substrates in P. aeruginosa.


Asunto(s)
Adenosina Trifosfatasas/genética , Chaperonas Moleculares/genética , Pseudomonas aeruginosa/genética , Sistemas de Secreción Tipo III/genética , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chaperonas Moleculares/química , Mapas de Interacción de Proteínas/genética , Pseudomonas aeruginosa/patogenicidad , Especificidad por Sustrato , Sistemas de Secreción Tipo III/química , Factores de Virulencia/química , Factores de Virulencia/genética
11.
Microorganisms ; 8(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486127

RESUMEN

The assembly of human cytomegalovirus (HCMV) virions is an orchestrated process that requires, as an essential prerequisite, the complex crosstalk between viral structural proteins. Currently, however, the mechanisms governing the successive steps in the constitution of virion protein complexes remain elusive. Protein phosphorylation is a key regulator determining the sequential changes in the conformation, binding, dynamics, and stability of proteins in the course of multiprotein assembly. In this review, we present a comprehensive map of the HCMV virion proteome, including a refined view on the virion phosphoproteome, based on previous publications supplemented by new results. Thus, a novel dataset of viral and cellular proteins contained in HCMV virions is generated, providing a basis for future analyses of individual phosphorylation steps and sites involved in the orchestrated assembly of HCMV virion-specific multiprotein complexes. Finally, we present the current knowledge on the activity of pUL97, the HCMV-encoded and virion-associated kinase, in phosphorylating viral and host proteins.

12.
Plant Physiol ; 181(4): 1449-1458, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31554701

RESUMEN

NADP(H) is an essential cofactor of multiple metabolic processes in all living organisms, and in plants, NADP(H) is required as the substrate of Ca2+-dependent NADPH oxidases, which catalyze a reactive oxygen species burst in response to various stimuli. While NADP+ production in plants has long been known to involve a calmodulin (CaM)/Ca2+-dependent NAD+ kinase, the nature of the enzyme catalyzing this activity has remained enigmatic, as has its role in plant physiology. Here, we used proteomic, biochemical, molecular, and in vivo analyses to identify an Arabidopsis (Arabidopsis thaliana) protein that catalyzes NADP+ production exclusively in the presence of CaM/Ca2+ This enzyme, which we named NAD kinase-CaM dependent (NADKc), has a CaM-binding peptide located in its N-terminal region and displays peculiar biochemical properties as well as different domain organization compared with known plant NAD+ kinases. In response to a pathogen elicitor, the activity of NADKc, which is associated with the mitochondrial periphery, contributes to an increase in the cellular NADP+ concentration and to the amplification of the elicitor-induced oxidative burst. Based on a phylogenetic analysis and enzymatic assays, we propose that the CaM/Ca2+-dependent NAD+ kinase activity found in photosynthetic organisms is carried out by NADKc-related proteins. Thus, NADKc represents the missing link between Ca2+ signaling, metabolism, and the oxidative burst.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estallido Respiratorio , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Flagelina/metabolismo , Cinética , Mitocondrias/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis , Filogenia , Unión Proteica , Dominios Proteicos , Plantones/metabolismo
13.
Sci Adv ; 5(5): eaav3235, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086816

RESUMEN

Resistance to platinum-based chemotherapy is a common event in patients with cancer, generally associated with tumor dissemination and metastasis. Whether platinum treatment per se activates molecular pathways linked to tumor spreading is not known. Here, we report that the ubiquitin-specific protease 1 (USP1) mediates ovarian cancer cell resistance to platinum, by regulating the stability of Snail, which, in turn, promotes tumor dissemination. At the molecular level, we observed that upon platinum treatment, USP1 is phosphorylated by ATM and ATR and binds to Snail. Then, USP1 de-ubiquitinates and stabilizes Snail expression, conferring resistance to platinum, increased stem cell-like features, and metastatic ability. Consistently, knockout or pharmacological inhibition of USP1 increased platinum sensitivity and decreased metastatic dissemination in a Snail-dependent manner. Our findings identify Snail as a USP1 target and open the way to a novel strategy to overcome platinum resistance and more successfully treat patients with ovarian cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejos de Coordinación/farmacología , Platino (Metal)/química , Factores de Transcripción de la Familia Snail/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Complejos de Coordinación/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Edición Génica , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción de la Familia Snail/antagonistas & inhibidores , Factores de Transcripción de la Familia Snail/genética , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Methods Mol Biol ; 1959: 129-150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30852820

RESUMEN

In discovery proteomics experiments, tandem mass spectrometry and data-dependent acquisition (DDA) are classically used to identify and quantify peptides and proteins through database searching. This strategy suffers from known limitations such as under-sampling and lack of reproducibility of precursor ion selection in complex proteomics samples, leading to somewhat inconsistent analytical results across large datasets. Data-independent acquisition (DIA) based on fragmentation of all the precursors detected in predetermined isolation windows can potentially overcome this limitation. DIA promises reproducible peptide and protein quantification with deeper proteome coverage and fewer missing values than DDA strategies. This approach is particularly attractive in the field of clinical biomarker discovery, where large numbers of samples must be analyzed. Here, we describe a DIA workflow for non-depleted serum analysis including a straightforward approach through which to construct a dedicated spectral library, and indications on how to optimize chromatographic and mass spectrometry analytical methods to produce high-quality DIA data and results.


Asunto(s)
Proteínas Sanguíneas , Espectrometría de Masas , Proteoma , Proteómica , Biomarcadores , Cromatografía Liquida , Cromatografía de Fase Inversa , Interpretación Estadística de Datos , Espectrometría de Masas/métodos , Péptidos , Proteómica/métodos , Espectrometría de Masas en Tándem
15.
Elife ; 72018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320549

RESUMEN

The intracellular parasite Toxoplasma gondii, hijacks evolutionarily conserved host processes by delivering effector proteins into the host cell that shift gene expression in a timely fashion. We identified a parasite dense granule protein as GRA18 that once released in the host cell cytoplasm forms versatile complexes with regulatory elements of the ß-catenin destruction complex. By interacting with GSK3/PP2A-B56, GRA18 drives ß-catenin up-regulation and the downstream effects on host cell gene expression. In the context of macrophages infection, GRA18 induces the expression of a specific set of genes commonly associated with an anti-inflammatory response that includes those encoding chemokines CCL17 and CCL22. Overall, this study adds another original strategy by which T. gondii tachyzoites reshuffle the host cell interactome through a GSK3/ß-catenin axis to selectively reprogram immune gene expression.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Toxoplasma/metabolismo , beta Catenina/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quimiocinas/metabolismo , Citoplasma/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Células RAW 264.7 , Transcripción Genética , Transcriptoma/genética
16.
Antiviral Res ; 159: 84-94, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30268914

RESUMEN

Human cytomegalovirus (HCMV) is a major human pathogen with seropositivity rates in the adult population ranging between 40% and 95%. HCMV infection is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Current standard therapy with valganciclovir has the disadvantage of adverse side effects and viral drug resistance. A novel anti-HCMV drug, letermovir, has been approved recently, so that improved therapy options are available. Nevertheless, even more so far unexploited classes of compounds and molecular modes of action will be required for a next generation of antiherpesviral treatment strategies. In this study, we focused on the analysis of the antiviral potency of a novel class of compounds, i.e. pyrrolopyridine analogs, and identified both hit compounds and their target protein candidates. In essence, we provide novel evidence as follows: (i) screening hit SC88941 is highly active in inhibiting HCMV replication in primary human fibroblasts with an EC50 value of 0.20 ±â€¯0.01 µM in the absence of cytotoxicity, (ii) inhibition occurs at the early-late stage of viral protein production and shows reinforcing effects upon LMV cotreatment, (iii) among the viruses analyzed, antiviral activity was most pronounced against ß-herpesviruses (HCMV, HHV-6A) and intermediate against adenovirus (HAdV-2), (iv) induction of SC88941 resistance was not detectable, thus differed from the induction of ganciclovir resistance, (v) a linker-coupled model compound was used for mass spectrometry-based target identification, thus yielding several drug-binding target proteins and (vi) a first confocal imaging approach used for addressing intracellular effects of SC88941 indicated qualitative and quantitative alteration of viral protein expression and localization. Thus, our findings suggest a multifaceted pattern of compound-target binding in connection with an unusual mode of action, opening up further opportunities of antiviral drug development.


Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Pirimidinas/farmacología , Pirroles/farmacología , Proteínas Virales/metabolismo , Adenoviridae/efectos de los fármacos , Antivirales/síntesis química , Descubrimiento de Drogas , Farmacorresistencia Viral , Fibroblastos/virología , Herpesviridae/efectos de los fármacos , Humanos , Espectrometría de Masas , Orthomyxoviridae/efectos de los fármacos , Pirimidinas/síntesis química , Pirroles/síntesis química , Replicación Viral/efectos de los fármacos
17.
J Breath Res ; 12(2): 021001, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29189203

RESUMEN

To improve biomedical knowledge and to support biomarker discovery studies, it is essential to establish comprehensive proteome maps for human tissues and biofluids, and to make them publicly accessible. In this study, we performed an in-depth proteomics characterization of exhaled breath condensate (EBC), a sample obtained non-invasively by condensation of exhaled air that contains submicron droplets of airway lining fluid. Two pooled samples of EBC, each obtained from 10 healthy donors, were processed using a straightforward protocol based on sample lyophilization, in-gel digestion and liquid chromatography tandem-mass spectrometry analysis. Two 'technical' control samples were processed in parallel to the pooled samples to correct for exogenous protein contamination. A total of 229 unique proteins were identified in EBC among which 153 proteins were detected in both EBC pooled samples. A detailed bioinformatics analysis of these 153 proteins showed that most of the proteins identified corresponded to proteins secreted in the respiratory tract (lung, bronchi). Eight proteins were salivary proteins. Our dataset is described and has been made accessible through the ProteomeXchange database (dataset identifier: PXD007591) and is expected to be useful for future MS-based biomarker studies using EBC as the diagnostic specimen.


Asunto(s)
Pruebas Respiratorias/métodos , Espiración , Proteómica/métodos , Adulto , Biomarcadores/análisis , Cromatografía Liquida , Bases de Datos de Proteínas , Femenino , Humanos , Masculino , Proteoma/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Espectrometría de Masas en Tándem
18.
J Gen Virol ; 98(10): 2569-2581, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28949903

RESUMEN

Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Virales/metabolismo , Liberación del Virus/fisiología , Transporte Activo de Núcleo Celular , Proteína Quinasa CDC2 , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Humanos , Espectrometría de Masas , Fosforilación , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/genética
19.
Proteomics ; 17(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28008711

RESUMEN

A proteomics assay was set up to analyze food substrates for eight toxins of the CBRN (chemical, biological, radiological and nuclear) threat, namely ricin, Clostridium perfringens epsilon toxin (ETX), Staphylococcus aureus enterotoxins (SEA, SEB and SED), shigatoxins from Shigella dysenteriae and entero-hemorragic Escherichia coli strains (STX1 and STX2) and Campylobacter jejuni cytolethal distending toxin (CDT). The assay developed was based on an antibody-free sample preparation followed by bottom-up LC-MS/MS analysis operated in targeted mode. Highly specific detection and absolute quantification were obtained using isotopically labeled proteins (PSAQ standards) spiked into the food matrix. The sensitivity of the assay for the eight toxins was lower than the oral LD50 which would likely be used in a criminal contamination of food supply. This assay should be useful in monitoring biological threats. In the public-health domain, it opens the way for multiplex investigation of food-borne toxins using targeted LC-MS/MS.


Asunto(s)
Proteómica/métodos , Toxinas Bacterianas/análisis , Cromatografía Liquida , Enterotoxinas/análisis , Toxina Shiga/análisis , Espectrometría de Masas en Tándem
20.
Plant Sci ; 252: 30-41, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717466

RESUMEN

Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Peroxirredoxinas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Clorofila/biosíntesis , Biología Computacional , Homeostasis , Espectrometría de Masas , Modelos Biológicos , Oxidación-Reducción , Peroxirredoxinas/genética , Plastidios/metabolismo , Pliegue de Proteína , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...