Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J A Hadron Nucl ; 59(2): 15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751673

RESUMEN

Muonic atom spectroscopy-the measurement of the x rays emitted during the formation process of a muonic atom-has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2p-1s muonic x rays from a 5  µ g gold target.

2.
Phys Rev Lett ; 123(14): 143001, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702181

RESUMEN

High-harmonic generation (HHG) is widely used for up-conversion of amplified (near) infrared ultrafast laser pulses to short wavelengths. We demonstrate that Ramsey-comb spectroscopy, based on two such pulses derived from a frequency-comb laser, enables us to observe phase effects in this process with a few mrad precision. As a result, we could perform the most accurate spectroscopic measurement based on light from HHG, illustrated with a determination of the 5p^{6}→5p^{5}8s^{2}[3/2]_{1} transition at 110 nm in ^{132}Xe. We improve its relative accuracy 10^{4} times to a value of 2.3×10^{-10}. This is 3.6 times better than shown before involving HHG, and promising to enable 1S-2S spectroscopy of He^{+} for fundamental tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...