Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IBRO Neurosci Rep ; 14: 393-397, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37101820

RESUMEN

Hartnup disease is an autosomal recessive, metabolic disorder caused by mutations of the neutral amino acid transporter, SLC6A19/B0AT1. Reduced absorption in the intestine and kidney results in deficiencies in neutral amino acids and their down-stream metabolites, including niacin, associated with skin lesions and neurological symptoms. The effects on the nervous system such as ataxia have been related to systemic deficiencies of tryptophan (and other neutral amino acids) as no expression of the B0AT1 transporter was found in the brain. In the intestine, SLC6A19 cooperates with ACE2 which has received major attention as the cellular receptor for SARS-CoV-2. When transcriptomics data for ACE2 and its partner proteins were examined, a previously unrecognized expression of Slc6a19 mRNA in the ependymal cells of the mouse brain was encountered that is set into the context of neurological manifestations of Hartnup disease with this communication. A novel role for SLC6A19/B0AT1 in amino acid transport from CSF into ependymal cells is proposed and a role of niacin in ependymal cells highlighted.

2.
Behav Neurosci ; 134(1): 21-33, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31724406

RESUMEN

Restricted, repetitive behavior (RRB) is diagnostic for autism spectrum disorder (ASD) and characteristic of a number of neurodevelopmental, psychiatric, and neurological disorders. RRB seen in ASD includes repetitive motor behavior and behaviors reflecting resistance to change and insistence on sameness. C58 mice provide a robust model of repetitive motor behavior and have shown resistance to change in a reversal learning task. We further characterized resistance to change in this model by inducing habitual responding and testing for differences in the ability to suppress habitual behavior and shift to goal-directed responding. We found no differences between C58 and control (C57BL/6) mice in the acquisition of operant tasks, habit formation, and expression of habitual responding. Habitual responding, however, induced significant reversal learning and contingency reversal performance deficits in C58 mice compared with C57BL/6 mice. Decreased dendritic spine density of the dorsomedial striatum in C58 mice was related to higher repetitive motor behavior, whereas dendritic spine density in the subthalamic nucleus was significantly positively correlated with improved contingency reversal performance in both C58 and C57BL/6 mice. Our results demonstrate that induction of habitual responding markedly impaired the ability of C58 mice to shift to goal-directed behavior. Such impairment may have resulted from the effects of the induction of habitual responding on already compromised basal ganglia circuitry mediating repetitive motor behavior. These findings provide additional evidence for the translational value of the C58 model in modeling RRB in neurodevelopmental disorders. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Aprendizaje Inverso/fisiología , Animales , Ganglios Basales/metabolismo , Ganglios Basales/fisiología , Conducta Animal/fisiología , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Hábitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...