Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765856

RESUMEN

This study determines an optimal spectral configuration for the CyanoSat imager for the discrimination and retrieval of cyanobacterial pigments using a simulated dataset with machine learning (ML). A minimum viable spectral configuration with as few as three spectral bands enabled the determination of cyanobacterial pigments phycocyanin (PC) and chlorophyll-a (Chl-a) but may not be suitable for determining cyanobacteria composition. A spectral configuration with about nine ideally positioned spectral bands enabled estimation of the cyanobacteria-to-algae ratio (CAR) and pigment concentrations with almost the same accuracy as using all 300 spectral channels. A narrower spectral band full-width half-maximum (FWHM) did not provide improved performance compared to the nominal 12 nm configuration. In conclusion, continuous sampling of the visible spectrum is not a requirement for cyanobacterial detection, provided that a multi-spectral configuration with ideally positioned, narrow bands is used. The spectral configurations identified here could be used to guide the selection of bands for future ocean and water color radiometry sensors.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Clorofila/análisis , Clorofila A , Agua , Aprendizaje Automático
2.
Sci Data ; 10(1): 412, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355642

RESUMEN

Paired measurements of phytoplankton absorption and backscatter, the inherent optical properties central to the interpretation of ocean colour remote sensing data, are notoriously rare. We present a dataset of Chlorophyll a (Chl a) -specific phytoplankton absorption, scatter and backscatter for 17 different phytoplankton groups, derived from first principles using measured in vivo pigment absorption and a well-validated semi-analytical coated sphere model which simulates the full suite of biophysically consistent phytoplankton optical properties. The optical properties of each simulated phytoplankton cell are integrated over an entire size distribution and are provided at high spectral resolution. The model code is additionally included to enable user access to the complete set of wavelength-dependent, angularly resolved volume scattering functions. This optically coherent dataset of hyperspectral optical properties for a set of globally significant phytoplankton groups has potential for use in algorithm development towards the optimal exploitation of the new age of hyperspectral satellite radiometry.

4.
Sci Data ; 10(1): 100, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797273

RESUMEN

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...