Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690739
2.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37516105

RESUMEN

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Asunto(s)
Linfocitos T CD8-positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Acetilación , Histonas/metabolismo , Cuerpos Cetónicos , Animales , Ratones
3.
bioRxiv ; 2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333111

RESUMEN

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

4.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172591

RESUMEN

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Asunto(s)
Histonas , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/genética , Histonas/metabolismo , Acetilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Sci Adv ; 9(14): eadg0731, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018401

RESUMEN

Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass. Loss of KDM5C in hematopoietic stem cells or bone marrow monocytes increases bone mass in female but not male mice. Mechanistically, loss of KDM5C impairs the bioenergetic metabolism, resulting in impaired osteoclastogenesis. Treatment with the KDM5 inhibitor reduces osteoclastogenesis and energy metabolism of both female mice and human monocytes. Our report details a sex-dependent mechanism for bone homeostasis, connecting epigenetic regulation to osteoclast metabolism and positions KDM5C as a potential target for future treatment of osteoporosis in women.


Asunto(s)
Osteoclastos , Osteoporosis , Animales , Femenino , Humanos , Masculino , Ratones , Metabolismo Energético , Epigénesis Genética , Histona Demetilasas/metabolismo , Osteoclastos/metabolismo
6.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865269

RESUMEN

Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well-understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass. Loss of KDM5C in hematopoietic stem cells or bone marrow monocytes (BMM) increases bone mass in female but not male mice. Mechanistically, loss of KDM5C impairs the bioenergetic metabolism resulting in impaired osteoclastogenesis. Treatment with the KDM5 inhibitor reduces osteoclastogenesis and energy metabolism of both female mice and human monocytes. Our report details a novel sex-dependent mechanism for bone homeostasis, connecting epigenetic regulation to osteoclast metabolism, and positions KDM5C as a target for future treatment of osteoporosis in women. One-Sentence Summary: KDM5C, an X-linked epigenetic regulator, controls female bone homeostasis by promoting energy metabolism in osteoclasts.

7.
Sci Immunol ; 8(82): eadf0348, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36821695

RESUMEN

The relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602K (MSDC), dampened pulmonary inflammation and promoted lung recovery while concurrently reducing blood glucose levels and hyperlipidemia after viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized hypoxia-inducible factor-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development after SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.


Asunto(s)
COVID-19 , Diabetes Mellitus , Hiperglucemia , Humanos , Animales , Ratones , Transportadores de Ácidos Monocarboxílicos , SARS-CoV-2/metabolismo , Glucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo
8.
Genes (Basel) ; 14(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672963

RESUMEN

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Asunto(s)
Proteínas del Grupo de Alta Movilidad , Factores de Transcripción SOX , Humanos , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Transcripción SOX/genética , Secuencia de Aminoácidos , Dimerización , Genotipo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción SOXB2/genética , Factores de Transcripción SOXB2/metabolismo , Factores de Transcripción SOXE/genética
9.
Immunity ; 55(9): 1583-1585, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103855

RESUMEN

Caloric restriction (CR) reduces inflammation and the incidence of chronic diseases, thereby extending healthspan and lifespan. In this issue of Immunity, Ryu et al. (2022) propose that reduction of SPARC, a matricellular protein, during CR offers beneficial effects by reducing SPARC-driven inflammatory phenotypes in macrophages.


Asunto(s)
Restricción Calórica , Longevidad , Humanos , Inflamación , Osteonectina/genética
10.
Sci Rep ; 12(1): 16028, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163487

RESUMEN

Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-ß (IFN-ß), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1ß (PGC-1ß), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-ß, when OXPHOS is maintained. We examined the role of PGC-1ß in bioenergetic metabolism of DCs and found that PGC-1ß deficiency indeed impairs their mitochondrial respiration. PGC-1ß-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1ß deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-ß treatment. Loss of PGC-1ß in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1ß is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.


Asunto(s)
Lipopolisacáridos , PPAR gamma , Adenosina Trifosfato , Expresión Génica , Interferón beta/genética , Interferón beta/metabolismo , Lipopolisacáridos/farmacología , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Cell Genom ; 2(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35873672

RESUMEN

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

12.
Nat Commun ; 12(1): 4051, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193875

RESUMEN

Zika virus (ZIKV) has emerged as an important global health threat, with the recently acquired capacity to cause severe neurological symptoms and to persist within host tissues. We previously demonstrated that an early Asian lineage ZIKV isolate induces a highly activated CD8 T cell response specific for an immunodominant epitope in the ZIKV envelope protein in wild-type mice. Here we show that a contemporary ZIKV isolate from the Brazilian outbreak severely limits CD8 T cell immunity in mice and blocks generation of the immunodominant CD8 T cell response. This is associated with a more sustained infection that is cleared between 7- and 14-days post-infection. Mechanistically, we demonstrate that infection with the Brazilian ZIKV isolate reduces the cross-presentation capacity of dendritic cells and fails to fully activate the immunoproteasome. Thus, our study provides an isolate-specific mechanism of host immune evasion by one Brazilian ZIKV isolate, which differs from the early Asian lineage isolate and provides potential insight into viral persistence associated with recent ZIKV outbreaks.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas del Envoltorio Viral/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Animales , Presentación de Antígeno , Brasil , Células Cultivadas , Chlorocebus aethiops , Modelos Animales de Enfermedad , Evasión Inmune , Ratones , Ratones Endogámicos C57BL , Virus Zika/aislamiento & purificación , Virus Zika/patogenicidad , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
13.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33690225

RESUMEN

Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Factor 4E Eucariótico de Iniciación/inmunología , Inmunidad Celular , Sistema de Señalización de MAP Quinasas/inmunología , Melanoma Experimental/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Factor 4E Eucariótico de Iniciación/genética , Inmunoterapia , Sistema de Señalización de MAP Quinasas/genética , Melanoma Experimental/genética , Melanoma Experimental/terapia , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Serina-Treonina Quinasas/genética , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/inmunología
14.
Immunology ; 161(3): 200-208, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32920838

RESUMEN

Cell migration is an essential, energetically demanding process in immunity. Immune cells navigate the body via chemokines and other immune mediators, which are altered under inflammatory conditions of injury or infection. Several factors determine the migratory abilities of different types of immune cells in diverse contexts, including the precise co-ordination of cytoskeletal remodelling, the expression of specific chemokine receptors and integrins, and environmental conditions. In this review, we present an overview of recent advances in our understanding of the relationship of each of these factors with cellular metabolism, with a focus on the spatial organization of glycolysis and mitochondria, reciprocal regulation of chemokine receptors and the influence of environmental changes.


Asunto(s)
Movimiento Celular/inmunología , Citoesqueleto/inmunología , Inflamación/inmunología , Animales , Quimiocinas/metabolismo , Glucólisis , Humanos , Inmunidad Celular , Integrinas/metabolismo , Receptores de Quimiocina/metabolismo
15.
Cell Rep ; 31(5): 107585, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375032

RESUMEN

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/metabolismo , Activación de Linfocitos/genética , MicroARNs/genética , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Humanos , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
16.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023446

RESUMEN

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Metionina , Esclerosis Múltiple , Células Th17/metabolismo , Animales , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacología , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Células Th17/citología
17.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747582

RESUMEN

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Activación de Linfocitos/inmunología , Metaboloma , Metabolómica , Animales , Proliferación Celular , Cromatografía de Gases y Espectrometría de Masas , Glucólisis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/genética , Metabolómica/métodos , Ratones , Estrés Oxidativo , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
18.
Front Immunol ; 10: 1119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214161

RESUMEN

Epigenetics has widespread implications in a variety of cellular processes ranging from cell identity and specification, to cellular adaptation to environmental stimuli. While typically associated with heritable changes in gene expression, epigenetic mechanisms are now appreciated to regulate dynamic changes in gene expression-even in post-mitotic cells. Cells of the innate immune system, including dendritic cells (DC), rapidly integrate signals from their microenvironment and respond accordingly, undergoing massive changes in transcriptional programming. This dynamic transcriptional reprogramming relies on epigenetic changes mediated by numerous enzymes and their substrates. This review highlights our current understanding of epigenetic regulation of DC function. Epigenetic mechanisms contribute to the maintenance of the steady state and are important for precise responses to proinflammatory stimuli. Interdependence between epigenetic modifications and the delicate balance of metabolites present another layer of complexity. In addition, dynamic regulation of the expression of proteins that modify chromatin architecture in DCs significantly impacts DC function. Environmental factors, including inflammation, aging, chemicals, nutrients, and lipid mediators, are increasingly appreciated to affect the epigenome in DCs, and, in doing so, regulate host immunity. Our understanding of how epigenetic mechanisms regulate DC function is in its infancy, and it must be expanded in order to discern the mechanisms underlying the balance between health and disease states.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Microambiente Celular , Metilación de ADN , Susceptibilidad a Enfermedades , Metabolismo Energético , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Tolerancia Inmunológica , Inmunidad Innata
19.
Vaccine ; 36(52): 8028-8038, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30448064

RESUMEN

Cell-mediated immunity is an important component of immediate and long-term anti-viral protection. Dendritic cells (DCs) are essential for the induction of cell-mediated immunity by instructing the activation and differentiation of antigen-specific T cell responses. Activated DCs that express co-stimulatory molecules and pro-inflammatory cytokines are necessary to promote the development of type 1 immune responses required for viral control. Here we report that plant-derived virus-like particles (VLPs) bearing influenza hemagglutinins (HA) directly stimulate mouse and human DCs. DCs exposed to H1- and, to a lesser extent, H5-VLPs in vitro rapidly express co-stimulatory molecules and produce pro-inflammatory cytokines including IL-12, IL-6 and TNFα. Furthermore, these VLPs support the activation and differentiation of antigen-specific T cell responses. Mechanistically, H1-VLPs stimulate the activation of kinases typically activated downstream of pattern recognition receptors including AKT, p38, and p42/44 ERK. In vivo, immunization with plant-derived VLPs induce the accumulation of both cDC1s and cDC2 in the draining lymph node and a corresponding increase in T and B cells. VLPs devoid of HA protein activate DCs, suggesting they are intrinsically immunostimulatory. Together, the results demonstrate that these candidate plant-derived VLP vaccines have an inherent and direct stimulatory effect on DCs and can enhance the ability of DCs to promote Type 1 immune responses.


Asunto(s)
Células Dendríticas/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular , Vacunas contra la Influenza/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Plantas/genética , Plantas/inmunología , Células TH1/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
20.
Nat Commun ; 9(1): 2463, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941886

RESUMEN

Dendritic cells (DCs) are first responders of the innate immune system that integrate signals from external stimuli to direct context-specific immune responses. Current models suggest that an active switch from mitochondrial metabolism to glycolysis accompanies DC activation to support the anabolic requirements of DC function. We show that early glycolytic activation is a common program for both strong and weak stimuli, but that weakly activated DCs lack long-term HIF-1α-dependent glycolytic reprogramming and retain mitochondrial oxidative metabolism. Early induction of glycolysis is associated with activation of AKT, TBK, and mTOR, and sustained activation of these pathways is associated with long-term glycolytic reprogramming. We show that inhibition of glycolysis impaired maintenance of elongated cell shape, DC motility, CCR7 oligomerization, and DC migration to draining lymph nodes. Together, our results indicate that early induction of glycolysis occurs independent of pro-inflammatory phenotype, and that glycolysis supports DC migratory ability regardless of mitochondrial bioenergetics.


Asunto(s)
Movimiento Celular/inmunología , Células Dendríticas/inmunología , Glucólisis/fisiología , Fosforilación Oxidativa , Receptores CCR7/metabolismo , Animales , Diferenciación Celular , Forma de la Célula/fisiología , Células Dendríticas/fisiología , Femenino , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...