Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765738

RESUMEN

Thermal imaging cameras and infrared (IR) temperature measurement devices act as state-of-the-art techniques for non-contact temperature determination of the skin surface. The former is cost-intensive in many cases for widespread application, and the latter requires manual alignment to the measuring point. Due to this background, this paper proposes a new method for automated, non-contact, and area-specific temperature measurement of the facial skin surface. It is based on the combined use of a low-cost thermopile sensor matrix and a 2D image sensor. The temperature values as well as the 2D image data are fused using a parametric affine transformation. Based on face recognition, this allows temperature values to be assigned to selected facial regions and used specifically to determine the skin surface temperature. The advantages of the proposed method are described. It is demonstrated by means of a participant study that the temperature absolute values, which are achieved without manual alignment in an automated manner, are comparable to a commercially available IR-based forehead thermometer.

2.
Toxicon ; 150: 253-260, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29890230

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.


Asunto(s)
Córnea/efectos de los fármacos , Venenos Elapídicos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Elapidae , Conejos
3.
Toxicon, v. 150, p. 253-260, ago. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2536

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.

4.
Toxicon ; 150: p. 253-260, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15327

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.

5.
Altern Lab Anim ; 43(3): 163-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26256395

RESUMEN

Ocular irritation testing is a common requirement for the classification, labelling and packaging of chemicals (substances and mixtures). The in vivo Draize rabbit eye test (OECD Test Guideline 405) is considered to be the regulatory reference method for the classification of chemicals according to their potential to induce eye injury. In the Draize test, chemicals are applied to rabbit eyes in vivo, and changes are monitored over time. If no damage is observed, the chemical is not categorised. Otherwise, the classification depends on the severity and reversibility of the damage. Alternative test methods have to be designed to match the classifications from the in vivo reference method. However, observation of damage reversibility is usually not possible in vitro. Within the present study, a new organotypic method based on rabbit corneas obtained from food production is demonstrated to close this gap. The Ex Vivo Eye Irritation Test (EVEIT) retains the full biochemical activity of the corneal epithelium, epithelial stem cells and endothelium. This permits the in-depth analysis of ocular chemical trauma beyond that achievable by using established in vitro methods. In particular, the EVEIT is the first test to permit the direct monitoring of recovery of all corneal layers after damage. To develop a prediction model for the EVEIT that is comparable to the GHS system, 37 reference chemicals were analysed. The experimental data were used to derive a three-level potency ranking of eye irritation and corrosion that best fits the GHS categorisation. In vivo data available in the literature were used for comparison. When compared with GHS classification predictions, the overall accuracy of the three-level potency ranking was 78%. The classification of chemicals as irritating versus non-irritating resulted in 96% sensitivity, 91% specificity and 95% accuracy.


Asunto(s)
Alternativas a las Pruebas en Animales , Bioensayo , Irritantes/análisis , Modelos Teóricos , Pruebas de Toxicidad/métodos , Animales , Ojo/efectos de los fármacos , Lesiones Oculares/inducido químicamente , Irritantes/toxicidad , Conejos
6.
Neoplasia ; 16(3): 235-46, 246.e1, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24784000

RESUMEN

For improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP) activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC) xenografts. MMP activity was measured in vivo in HaCaT-ras A-5RT3 tumors at different angiogenic and invasive stages (onset of angiogenesis, intermediate and highly angiogenic, invasive stage) and after 1 week of sunitinib treatment by fluorescence molecular tomography-microcomputed tomography imaging using an activatable probe. Treatment response was additionally assessed morphologically by optical coherence tomography (OCT). In vivo MMP activity significantly differed between the groups, revealing highest levels in the highly angiogenic, invasive tumors that were confirmed by immunohistochemistry. At the onset of angiogenesis with lowest MMP activity, fibroblasts were detected in the MMP-positive areas, whereas macrophages were absent. Accumulation of both cell types occurred in both invasive groups, again to a significantly higher degree at the most invasive and angiogenic stage. Sunitinib treatment significantly reduced the MMP activity and accumulation of fibroblasts and macrophages and blocked tumor invasion that was additionally visualized by OCT. Human cervical SCCs also showed high MMP activity and a similar stromal composition as the HaCaT xenografts, whereas normal tissue was negative. This study strongly suggests MMP activity as imaging biomarker and demonstrates the high sensitivity of optical tomography in determining tumor invasiveness that can morphologically be supported by OCT.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/patología , Metaloproteinasas de la Matriz/análisis , Neovascularización Patológica/enzimología , Neoplasias Cutáneas/patología , Tomografía de Coherencia Óptica/métodos , Inhibidores de la Angiogénesis/farmacología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Femenino , Humanos , Indoles/farmacología , Metaloproteinasas de la Matriz/metabolismo , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Pirroles/farmacología , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/enzimología , Células del Estroma/enzimología , Células del Estroma/patología , Sunitinib , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/patología , Microtomografía por Rayos X/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Opt Express ; 18(10): 9976-90, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20588852

RESUMEN

Electronically controlled coherent linear optical sampling for low coherence interferometry (LCI) and optical coherence tomography (OCT) is demonstrated, using two turn-key commercial mode-locked fiber lasers with synchronized repetition rates. This novel technique prevents repetition rate limitations present in previous implementations based on asynchronous optical sampling. Adjustable scanning ranges and scanning rates are realized within an interferometric setup by full electronic control of the mutual time delay of the two laser pulse trains. We implement this novel linear optical sampling scheme with broad spectral bandwidths for LCI, optical filter characterization and OCT imaging in two and three dimensions.


Asunto(s)
Amplificadores Electrónicos , Tecnología de Fibra Óptica/instrumentación , Aumento de la Imagen/instrumentación , Rayos Láser , Procesamiento de Señales Asistido por Computador/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Tamaño de la Muestra , Sensibilidad y Especificidad
8.
Opt Lett ; 34(13): 1970-2, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571969

RESUMEN

A fiber-based spectral domain optical coherence tomography (OCT) system is described, imaging simultaneously at 740 and 1300 nm central wavelengths. Real-time imaging is demonstrated with axial resolutions <3 and <5 microm, respectively. This technique allows for in vivo high-resolution functional OCT imaging with outstanding spectroscopic contrast.

9.
Opt Lett ; 33(18): 2092-4, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794941

RESUMEN

A time domain optical coherence tomography (OCT) system without moving parts is described, which is based on multiheterodyning utilizing two mode-locked femtosecond lasers. By synchronizing the two lasers to slightly different repetition rates and coupling to an interferometric OCT setup, we obtain amplitude-modulated beat signals representing the structure of the specimen under investigation. Our system is suitable for biological imaging as well as technical applications. We demonstrate high axial imaging depths of 150 mm with up to 5000 axial scans per second, achieving equivalent path scanning velocities of 750 m/s.

10.
Opt Express ; 15(17): 10832-41, 2007 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-19547440

RESUMEN

Ultra-high resolution optical coherence tomography (OCT) imaging is demonstrated simultaneously at 840 nm and 1230 nm central wavelength using an off-the-shelf turn-key supercontinuum light source. Spectral filtering of the light source emission results in a double peak spectrum with average powers exceeding 100 mW and bandwidths exceeding 200 nm for each wavelength band. A free-space OCT setup optimized to support both wavelengths in parallel is introduced. OCT imaging of biological tissue ex vivo and in vivo is demonstrated with axial resolutions measured to be < 2 mum and < 4 mum at 840 nm and 1230 nm, respectively. This measuring scheme is used to extract spectroscopic features with outstanding spatial resolution enabling enhanced image contrast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...