Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593609

RESUMEN

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Asunto(s)
Azurina , Modelos Moleculares , Cinética , Electroquímica , Azurina/química , Azurina/genética , Azurina/metabolismo , Actinobacteria/química , Thermoplasmales/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Terciaria de Proteína , Hierro/metabolismo , Oxidación-Reducción , Biotecnología , Estabilidad Proteica , Secuencia Conservada/genética
2.
Front Chem ; 11: 1196073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408556

RESUMEN

ß-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to ß-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use ß-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-ß-lactamases have long been clinically important, most broad-spectrum ß-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-ß-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-ß-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of ß-lactam resistance.

3.
J Inorg Biochem ; 226: 111637, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34749064

RESUMEN

Resistance to ß-lactam antibiotics, including the "last-resort" carbapenems, has emerged as a major threat to global health. A major resistance mechanism employed by pathogens involves the use of metallo-ß-lactamases (MBLs), zinc-dependent enzymes that inactivate most of the ß-lactam antibiotics used to treat infections. Variants of MBLs are frequently discovered in clinical environments. However, an increasing number of such enzymes have been identified in microorganisms that are less impacted by human activities. Here, an MBL from Lysobacter antibioticus, isolated from the rhizosphere, has been shown to be highly active toward numerous ß-lactam antibiotics. Its activity is higher than that of some of the most effective MBLs linked to hospital-acquired antibiotic resistance and thus poses an interesting system to investigate evolutionary pressures that drive the emergence of such biocatalysts.


Asunto(s)
Antibacterianos/química , Lysobacter/enzimología , Zinc/química , beta-Lactamasas/química , beta-Lactamas/química
4.
Sci Rep ; 10(1): 12882, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732933

RESUMEN

Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding ß-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used ß-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent ß-lactamases (MBLs) from the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans. Previous studies have demonstrated that their ß-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.


Asunto(s)
Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Gammaproteobacteria/enzimología , Sphingomonadaceae/enzimología , beta-Lactamasas/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , beta-Lactamasas/metabolismo , beta-Lactamas/química , beta-Lactamas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...