Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730559

RESUMEN

The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and caecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.

2.
Poult Sci ; 103(6): 103752, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38701628

RESUMEN

Microbiome of the gastrointestinal tract (GIT) has been identified as one of the crucial factors influencing the health and condition of domestic animals. The global poultry industry faces the challenge of understanding the complex relationship between gut microbiota composition and performance-related traits in birds. Considerable variation exists in the results of correlational studies using either 16S rRNA profiling or metagenomics to identify bacterial taxa associated with performance, productivity, or condition in poultry (e.g., body weight, growth rate, feeding efficiency, or egg yield). In this review, we survey the existing reports, discuss variation in research approaches, and identify bacterial taxa consistently linked to improved or deteriorated performance across individual poultry-focused studies. Our survey revealed high methodological heterogeneity, which was in contrast with vastly uniform focus of the research mainly on the domestic chicken (Gallus gallus) as a model. We also show that the bacterial taxa most frequently used in manipulative experiments and commercial probiotics intended for use in poultry (e.g., species of Lactobacillus, Bacillus, Enterococcus, or Bifidobacterium) do not overlap with the bacteria consistently correlated with their improved performance (Candidatus Arthromitus, Methanobrevibacter). Our conclusions urge for increased methodological standardization of the veterinary research in this field. We highlight the need to bridge the gap between correlational results and experimental applications in animal science. To better understand causality in the observed relationships, future research should involve a broader range of host species that includes both agricultural and wild models, as well as a broader range of age groups.

4.
Int. microbiol ; 27(1): 127-142, Feb. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-230249

RESUMEN

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.(AU)


Asunto(s)
Humanos , Animales , Loros/metabolismo , Tracto Gastrointestinal/microbiología , Microbiota , Bacterias/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Tracto Gastrointestinal/metabolismo , Microbiología , Técnicas Microbiológicas , Microbiota/genética , Periquitos
5.
Sci Total Environ ; 921: 171082, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382598

RESUMEN

Springs offer insights into groundwater dynamics. Long-term monitoring of spring yields can reflect the response of groundwater storage to climate change. We analyzed the yield trends of 136 springs across 18 hydrogeological regions in Czechia from 1971 to 2020. The trend-free pre-whitening Mann-Kendall test and linear mixed-effects models were used to assess environmental impacts on spring yields. Overall, 71 % of the springs showed no long-term trends, 28 % exhibited decreasing trends, and 1.5 % showed increasing trends in annual spring yields. Altitude has been demonstrated as a contributing factor influencing spring responses to climate change. Lowland springs (<300 m a.s.l.) exhibited the highest proportion of decreasing annual trends (41 %), while uplands (300-600 m a.s.l.) and highlands (>600 m a.s.l.) showed declines in 26 % and 25 % of springs, respectively. Moreover, highlands recorded a 7 % yield increase, indicating a complex interplay between altitude and spring response to climatic factors. A strong positive correlation was found between precipitation and yields (p < 0.01), whereas temperature increases negatively affected spring yields (p < 0.01). The interaction between temperature changes and region transmissivity highlighted the vulnerability of springs in low-transmissivity regions, predominantly those in crystalline and flysch bedrock areas, to climatic shifts. Generally, these regions have lower spring yields compared to the high-transmissivity areas of the Cretaceous basins. Although these lower-yield regions are not used as a primary water source for large areas, unlike regions with high-transmissivity bedrock, they provide water resources for local supply. Analysis of annual spring maxima frequencies revealed a shift in the culmination of maxima occurrences from April to March, with a significant decrease in April (p < 0.05) and May (p < 0.1) and an increase in March (p < 0.05), suggesting a change in spring yield seasonality. The 2015-2020 drought significantly accelerated declining spring yield trends across hydrogeological regions.

6.
Vet Parasitol Reg Stud Reports ; 47: 100961, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199682

RESUMEN

Parasitic diseases and mitigation of their effects play an important role in the health management of grazing livestock worldwide, with gastrointestinal strongylid nematodes being of prominent importance. These helminths typically occur in complex communities, often composed of species from numerous strongylid genera. Detecting the full diversity of strongylid species in non-invasively collected faecal samples is nearly impossible using conventional methods. In contrast, high-throughput amplicon sequencing (HTS) can effectively identify co-occurring species. During the four-year project, we collected and analysed faecal samples from beef cattle on >120 farms throughout the Czech Republic. Strongylids were the predominant nematodes, detected in 56% of the samples, but at a low level of infection. The apparent limitations in identifying strongylid taxa prompted this pilot study on a representative group of samples testing positive for strongylids using ITS-2 metabarcoding. The most widespread genera parasitizing Czech cattle were Ostertagia (O. ostertagi) and Oesophagostomum spp., followed by Trichostrongylus and Cooperia, while Bunostomum, Nematodirus and Chabertia were present only in a minority. As comparative material, 21 samples of cattle from the Danube Delta in Romania were used, which, in contrast, were dominated by Haemonchus placei. Finally, the effect of ivermectin treatment was tested at two Czech farms. After treatment with the anthelmintic, there was a shift in the strongylid communities, with a dominance of Cooperia and Ostertagia.


Asunto(s)
Antihelmínticos , Haemonchus , Trichostrongyloidea , Bovinos , Animales , República Checa , Proyectos Piloto , Antihelmínticos/uso terapéutico , Resultado del Tratamiento , Trichostrongyloidea/genética , Ostertagia
7.
Microbiol Spectr ; 12(2): e0203723, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171017

RESUMEN

Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.


Asunto(s)
Proteoma , Proteómica , Femenino , Animales , Ratones , ARN Ribosómico 16S/genética , Ciclo Estral , Reproducción , Bacterias/genética , Vagina/microbiología , Mamíferos , Proteínas de Unión al Calcio , Proteínas de Filamentos Intermediarios
8.
Sleep Med ; 113: 95-102, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995475

RESUMEN

In recent years, there has been an increased interest in elucidating the influence of the gut microbiota on sleep physiology. The gut microbiota affects the central nervous system by modulating neuronal pathways through the neuroendocrine and immune system, the hypothalamus-pituitary-adrenal axis, and various metabolic pathways. The gut microbiota can also influence circadian rhythms. In this study, we observed the gut microbiota composition of patients suffering from narcolepsy type 1, narcolepsy type 2, and idiopathic hypersomnia. We did not observe any changes in the alpha diversity of the gut microbiota among patient groups and healthy controls. We observed changes in beta diversity in accordance with Jaccard dissimilarities between the control group and groups of patients suffering from narcolepsy type 1 and idiopathic hypersomnia. Our results indicate that both these patient groups differ from controls relative to the presence of rare bacterial taxa. However, after adjustment for various confounding factors such as BMI, age, and gender, there were no statistical differences among the groups. This indicates that the divergence in beta diversity in the narcolepsy type 1 and idiopathic hypersomnia groups did not arise due to sleep disturbances. This study implies that using metabolomics and proteomics approaches to study the role of microbiota in sleep disorders might prove beneficial.


Asunto(s)
Trastornos de Somnolencia Excesiva , Microbioma Gastrointestinal , Hipersomnia Idiopática , Narcolepsia , Trastornos del Sueño-Vigilia , Humanos , Sueño
9.
Int Microbiol ; 27(1): 127-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37222909

RESUMEN

Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.


Asunto(s)
Microbiota , Loros , Animales , Loros/genética , ARN Ribosómico 16S/genética , Sistema Respiratorio/microbiología , Bacterias/genética
10.
Mol Ecol ; 33(1): e17192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933543

RESUMEN

The question of how interactions between the gut microbiome and vertebrate hosts contribute to host adaptation and speciation is one of the major problems in current evolutionary research. Using bacteriome and mycobiome metabarcoding, we examined how these two components of the gut microbiota vary with the degree of host admixture in secondary contact between two house mouse subspecies (Mus musculus musculus and M. m. domesticus). We used a large data set collected at two replicates of the hybrid zone and model-based statistical analyses to ensure the robustness of our results. Assuming that the microbiota of wild hosts suffers from spatial autocorrelation, we directly compared the results of statistical models that were spatially naive with those that accounted for spatial autocorrelation. We showed that neglecting spatial autocorrelation can strongly affect the results and lead to misleading conclusions. The spatial analyses showed little difference between subspecies, both in microbiome composition and in individual bacterial lineages. Similarly, the degree of admixture had minimal effects on the gut bacteriome and mycobiome and was caused by changes in a few microbial lineages that correspond to the common symbionts of free-living house mice. In contrast to previous studies, these data do not support the hypothesis that the microbiota plays an important role in host reproductive isolation in this particular model system.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/genética , Evolución Biológica , Aislamiento Reproductivo
11.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38115624

RESUMEN

During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Passeriformes , Femenino , Animales , Passeriformes/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética
12.
PLoS Negl Trop Dis ; 17(8): e0011499, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624869

RESUMEN

Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.


Asunto(s)
Ancylostoma , Pan troglodytes , Animales , Humanos , Camerún/epidemiología , Filogenia , Animales Salvajes
13.
J Immunol Res ; 2023: 1535484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383609

RESUMEN

Background: Tumor necrosis factor-alpha (TNF-α) agonists revolutionized therapeutic algorithms in inflammatory bowel disease (IBD) management. However, approximately every third IBD patient does not respond to this therapy in the long term, which delays efficient control of the intestinal inflammation. Methods: We analyzed the power of serum biomarkers to predict the failure of anti-TNF-α. We collected serum of 38 IBD patients at therapy prescription and 38 weeks later and analyzed them with relation to therapy response (no-, partial-, and full response). We used enzyme-linked immunosorbent assay to quantify 16 biomarkers related to gut barrier (intestinal fatty acid-binding protein, liver fatty acid-binding protein, trefoil factor 3, and interleukin (IL)-33), microbial translocation, immune system regulation (TNF-α, CD14, lipopolysaccharide-binding protein, mannan-binding lectin, IL-18, transforming growth factor-ß1 (TGF-ß1), osteoprotegerin (OPG), insulin-like growth factor 2 (IGF-2), endocrine-gland-derived vascular endothelial growth factor), and matrix metalloproteinase system (MMP-9, MMP-14, and tissue inhibitors of metalloproteinase-1). Results: We found that future full-responders have different biomarker profiles than non-responders, while partial-responders cannot be distinguished from either group. When future non-responders were compared to responders, their baseline contained significantly more TGF-ß1, less CD14, and increased level of MMP-9, and concentration of these factors could predict non-responders with high accuracy (AUC = 0.938). Interestingly, during the 38 weeks, levels of MMP-9 decreased in all patients, irrespective of the outcome, while OPG, IGF-2, and TGF-ß1 were higher in non-responders compared to full-responders both at the beginning and the end of the treatment. Conclusions: The TGF-ß1 and CD14 can distinguish non-responders from responders. The changes in biomarker dynamics during the therapy suggest that growth factors (such as OPG, IGF-2, and TGF-ß) are not markedly influenced by the treatment and that anti-TNF-α therapy decreases MMP-9 without influencing the treatment outcome.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Factor de Crecimiento Transformador beta1 , Humanos , Metaloproteinasa 9 de la Matriz , Inhibidores del Factor de Necrosis Tumoral , Factor A de Crecimiento Endotelial Vascular
14.
Front Microbiol ; 14: 1080017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819027

RESUMEN

Introduction: Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. Methods: Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. Results: We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. Discussion: Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.

15.
PLoS One ; 17(12): e0277576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584073

RESUMEN

BACKGROUND: Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-ß1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE: In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.


Asunto(s)
Enfermedad de Crohn , Microbiota , Humanos , Ustekinumab/uso terapéutico , Proyectos Piloto , Inhibidores del Factor de Necrosis Tumoral , Enfermedad de Crohn/terapia , Biomarcadores
16.
Ecol Evol ; 12(7): e9071, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813907

RESUMEN

Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.

17.
Mol Ecol ; 31(15): 4127-4145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661299

RESUMEN

Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure is mounting to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from 20 phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights the complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, among great apes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Bacteroidetes , Heces/microbiología , Microbioma Gastrointestinal/genética , Gorilla gorilla/genética , Humanos
18.
FEMS Microbiol Ecol ; 98(8)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35767862

RESUMEN

The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM-host coadaptations and the fitness effects of their interactions.


Asunto(s)
Microbioma Gastrointestinal , Animales , Interacciones Microbiota-Huesped , Ratones , ARN Ribosómico 16S/genética
19.
Sci Rep ; 12(1): 3787, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260644

RESUMEN

Quality and quantity of food items consumed has a crucial effect on phenotypes. In addition to direct effects mediated by nutrient resources, an individual's diet can also affect the phenotype indirectly by altering its gut microbiota, a potent modulator of physiological, immunity and cognitive functions. However, most of our knowledge of diet-microbiota interactions is based on mammalian species, whereas little is still known about these effects in other vertebrates. We developed a metabarcoding procedure based on cytochrome c oxidase I high-throughput amplicon sequencing and applied it to describe diet composition in breeding colonies of an insectivorous bird, the barn swallow (Hirundo rustica). To identify putative diet-microbiota associations, we integrated the resulting diet profiles with an existing dataset for faecal microbiota in the same individual. Consistent with previous studies based on macroscopic analysis of diet composition, we found that Diptera, Hemiptera, Coleoptera and Hymenoptera were the dominant dietary components in our population. We revealed pronounced variation in diet consumed during the breeding season, along with significant differences between nearby breeding colonies. In addition, we found no difference in diet composition between adults and juveniles. Finally, our data revealed a correlation between diet and faecal microbiota composition, even after statistical control for environmental factors affecting both diet and microbiota variation. Our study suggests that variation in diet induce slight but significant microbiota changes in a non-mammalian host relying on a narrow spectrum of items consumed.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Golondrinas , Animales , Dieta , Heces , Microbioma Gastrointestinal/genética , Mamíferos
20.
Front Cell Infect Microbiol ; 12: 1064537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704107

RESUMEN

Crohn's disease (CD) and ulcerative colitis (UC) are two forms of inflammatory bowel disease (IBD), where the role of gut but not skin dysbiosis is well recognized. Inhibitors of TNF have been successful in IBD treatment, but up to a quarter of patients suffer from unpredictable skin adverse events (SkAE). For this purpose, we analyzed temporal dynamics of skin microbiota and serum markers of inflammation and epithelial barrier integrity during anti-TNF therapy and SkAE manifestation in IBD patients. We observed that the skin microbiota signature of IBD patients differs markedly from healthy subjects. In particular, the skin microbiota of CD patients differs significantly from that of UC patients and healthy subjects, mainly in the retroauricular crease. In addition, we showed that anti-TNF-related SkAE are associated with specific shifts in skin microbiota profile and with a decrease in serum levels of L-FABP and I-FABP in IBD patients. For the first time, we showed that shifts in microbial composition in IBD patients are not limited to the gut and that skin microbiota and serum markers of the epithelium barrier may be suitable markers of SkAE during anti-TNF therapy.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Inhibidores del Factor de Necrosis Tumoral , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...