Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 36(6): 906-924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37256290

RESUMEN

Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype-phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.


Asunto(s)
Células Eucariotas , Evolución Molecular , Modelos Genéticos , Mutación , Fenotipo
2.
Elife ; 102021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096867

RESUMEN

The immeasurable complexity at every level of biological organization creates a daunting task for understanding biological function. Here, we highlight the risks of stripping it away at the outset and discuss a possible path toward arriving at emergent simplicity of understanding while still embracing the ever-changing complexity of biotic interactions that we see in nature.


Asunto(s)
Evolución Biológica , Biota/fisiología , Modelos Biológicos , Biología de Sistemas , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos
3.
Genes (Basel) ; 10(9)2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500388

RESUMEN

Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Polimorfismo Genético , Evolución Molecular , Conversión Génica , Duplicación de Gen
4.
Mol Biol Evol ; 33(2): 501-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26576852

RESUMEN

The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes' expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations-Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years.


Asunto(s)
Adaptación Biológica/genética , Altitud , Hipoxia/genética , Animales , Evolución Biológica , Drosophila , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética
5.
Dev Biol ; 405(1): 173-81, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26129990

RESUMEN

The evolution of canalized traits is a central question in evolutionary biology. Natural variation in highly conserved traits can provide clues about their evolutionary potential. Here we investigate natural variation in a conserved trait-even-skipped (eve) expression at the cellular blastoderm stage of embryonic development in Drosophila melanogaster. Expression of the pair-rule gene eve was quantitatively measured in three inbred lines derived from a natural population of D. melanogaster. One line showed marked differences in the spacing, amplitude and timing of formation of the characteristic seven-striped pattern over a 50-min period prior to the onset of gastrulation. Stripe 5 amplitude and the width of the interstripe between stripes 4 and 5 were both reduced in this line, while the interstripe distance between stripes 3 and 4 was increased. Engrailed expression in stage 10 embryos revealed a statistically significant increase in the length of parasegment 6 and a decrease in the length of parasegments 8 and 9. These changes are larger than those previously reported between D. melanogaster and D. pseudoobscura, two species that are thought to have diverged from a common ancestor over 25 million years ago. This line harbors a rare 448 bp deletion in the first intron of knirps (kni). This finding suggested that reduced Kni levels caused the deviant eve expression, and indeed we observed lower levels of Kni protein at early cycle 14A in L2 compared to the other two lines. A second of the three lines displayed an approximately 20% greater level of expression for all seven eve stripes. The three lines are each viable and fertile, and none display a segmentation defect as adults, suggesting that early-acting variation in eve expression is ameliorated by developmental buffering mechanisms acting later in development. Canalization of the segmentation pathway may reduce the fitness consequences of genetic variation, thus allowing the persistence of mutations with unexpectedly strong gene expression phenotypes.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Variación Genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , ARN/genética , ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
6.
Mol Biol Evol ; 32(10): 2616-32, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26044351

RESUMEN

Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , Genoma de los Insectos , Herencia Multifactorial/genética , Óvulo/citología , Análisis de Secuencia de ADN/métodos , Animales , Tamaño de la Célula , Cruzamientos Genéticos , Evolución Molecular Dirigida , Femenino , Regulación de la Expresión Génica , Frecuencia de los Genes/genética , Ontología de Genes , Estudios de Asociación Genética , Variación Genética , Masculino , Fenotipo
7.
PLoS One ; 9(5): e91924, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24786295

RESUMEN

Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution.


Asunto(s)
Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Dípteros/genética , Dípteros/metabolismo , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Orden Génico , Haplotipos , Proteínas de Homeodominio/metabolismo , Mutación INDEL , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , Alineación de Secuencia , Eliminación de Secuencia
8.
Mol Biol Evol ; 31(4): 903-16, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24408913

RESUMEN

Upstream regulatory sequences that control gene expression evolve rapidly, yet the expression patterns and functions of most genes are typically conserved. To address this paradox, we have reconstructed computationally and resurrected in vivo the cis-regulatory regions of the ancestral Drosophila eve stripe 2 element and evaluated its evolution using a mathematical model of promoter function. Our feed-forward transcriptional model predicts gene expression patterns directly from enhancer sequence. We used this functional model along with phylogenetics to generate a set of possible ancestral eve stripe 2 sequences for the common ancestors of 1) D. simulans and D. sechellia; 2) D. melanogaster, D. simulans, and D. sechellia; and 3) D. erecta and D. yakuba. These ancestral sequences were synthesized and resurrected in vivo. Using a combination of quantitative and computational analysis, we find clear support for functional compensation between the binding sites for Bicoid, Giant, and Krüppel over the course of 40-60 My of Drosophila evolution. We show that this compensation is driven by a coupling interaction between Bicoid activation and repression at the anterior and posterior border necessary for proper placement of the anterior stripe 2 border. A multiplicity of mechanisms for binding site turnover exemplified by Bicoid, Giant, and Krüppel sites, explains how rapid sequence change may occur while maintaining the function of the cis-regulatory element.


Asunto(s)
Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Animales , Teorema de Bayes , Sitios de Unión , Proteínas de Drosophila/genética , Genes de Insecto , Especiación Genética , Proteínas de Homeodominio/genética , Modelos Genéticos , Filogenia , Factores de Transcripción/genética , Transcripción Genética
9.
Genetics ; 196(2): 539-55, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24281154

RESUMEN

Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance of disease-specific phenotypic variability in our model of misfolded human proinsulin makes this approach amenable to genome-wide association study in a simple F1 screen of natural variation.


Asunto(s)
Diabetes Mellitus/genética , Proinsulina/genética , Animales , Animales Modificados Genéticamente , Análisis por Conglomerados , Modelos Animales de Enfermedad , Drosophila melanogaster , Ojo/metabolismo , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Masculino , Mutación , Fenotipo , Proinsulina/química , Pliegue de Proteína , Carácter Cuantitativo Heredable , Transcriptoma , Transgenes , Alas de Animales/metabolismo
10.
Genetics ; 196(2): 557-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24281155

RESUMEN

The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress-response pathways and leads to cell death (reduction in eye area). Dominant-acting variants in wild-derived inbred lines from the Drosophila Genetics Reference Panel produce a continuous, highly heritable distribution of eye-degeneration phenotypes in a hINS(C96Y) background. A genome-wide association study (GWAS) in 154 sequenced lines identified a sharp peak on chromosome 3L, which mapped to a 400-bp linkage block within an intron of the gene sulfateless (sfl). RNAi knockdown of sfl enhanced the eye-degeneration phenotype in a mutant-hINS-dependent manner. RNAi against two additional genes in the heparan sulfate (HS) biosynthetic pathway (ttv and botv), in which sfl acts, also modified the eye phenotype in a hINS(C96Y)-dependent manner, strongly suggesting a novel link between HS-modified proteins and cellular responses to misfolded proteins. Finally, we evaluated allele-specific expression difference between the two major sfl-intronic haplotypes in heterozygtes. The results showed significant heterogeneity in marker-associated gene expression, thereby leaving the causal mutation(s) and its mechanism unidentified. In conclusion, the ability to create a model of human genetic disease, map a QTL by GWAS to a specific gene, and validate its contribution to disease with available genetic resources and the potential to experimentally link the variant to a molecular mechanism demonstrate the many advantages Drosophila holds in determining the genetic underpinnings of human disease.


Asunto(s)
Diabetes Mellitus/genética , Variación Genética , Proinsulina/genética , Alelos , Animales , Animales Modificados Genéticamente , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epistasis Genética , Ojo/metabolismo , Ojo/patología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Heparitina Sulfato/biosíntesis , Humanos , Intrones , Masculino , Mutación , Fenotipo , Proinsulina/química , Pliegue de Proteína , Interferencia de ARN , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
11.
Development ; 141(1): 124-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24284208

RESUMEN

The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila melanogaster/embriología , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Transactivadores/biosíntesis , Transactivadores/genética
12.
Genetics ; 194(1): 163-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23410834

RESUMEN

The deleterious effects of different X-chromosome dosage in males and females are buffered by a process called dosage compensation, which in Drosophila is achieved through a doubling of X-linked transcription in males. The male-specific lethal complex mediates this process, but is known to act only after gastrulation. Recent work has shown that the transcription of X-linked genes is also upregulated in males prior to gastrulation; whether it results in functional dosage compensation is not known. Absent or partial early dosage compensation raises the possibility of sex-biased expression of key developmental genes, such as the segmentation genes controlling anteroposterior patterning. We assess the functional output of early dosage compensation by measuring the expression of even-skipped (eve) with high spatiotemporal resolution in male and female embryos. We show that eve has a sexually dimorphic pattern, suggesting an interaction with either X-chromosome dose or the sex determination system. By manipulating the gene copy number of an X-linked transcription factor, giant (gt), we traced sex-biased eve patterning to gt dose, indicating that early dosage compensation is functionally incomplete. Despite sex-biased eve expression, the gene networks downstream of eve are able to produce sex-independent segmentation, a point that we establish by measuring the proportions of segments in elongated germ-band embryos. Finally, we use a whole-locus eve transgene with modified cis regulation to demonstrate that segment proportions have a sex-dependent sensitivity to subtle changes in Eve expression. The sex independence of downstream segmentation despite this sensitivity to Eve expression implies that additional autosomal gene- or pathway-specific mechanisms are required to ameliorate the effects of partial early dosage compensation.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/embriología , Caracteres Sexuales , Animales , Compensación de Dosificación (Genética) , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Genes de Insecto/genética , Masculino , Transgenes
13.
Angew Chem Int Ed Engl ; 51(20): 4802-36, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22555867

RESUMEN

In nature, chiral natural products are usually produced in optically pure form-however, occasionally both enantiomers are formed. These enantiomeric natural products can arise from a single species or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers; however, many fascinating puzzles and stereochemical anomalies still remain.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/metabolismo , Animales , Humanos , Estereoisomerismo
14.
PLoS Genet ; 7(11): e1002364, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102826

RESUMEN

The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long "minimal stripe element" is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped(-) lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that "robustness" itself must be an evolved characteristic of the wild-type enhancer.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Letales/genética , Aptitud Genética , Especificidad de Órganos , Transgenes/genética
15.
Development ; 138(13): 2741-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21613328

RESUMEN

An important feature of development is the formation of patterns that are proportional to the overall size of the embryo. But how such proportionality, or scaling, is achieved mechanistically remains poorly understood. Furthermore, it is currently unclear whether organisms utilize similar or distinct mechanisms to achieve scaling within a species and between species. Here we investigate within-species scaling mechanisms for anterior-posterior (A-P) patterning in Drosophila melanogaster, focusing specifically on the properties of the Bicoid (Bcd) morphogen gradient. Using embryos from lines artificially selected for large and small egg volume, we show that large embryos have higher nuclear Bcd concentrations in the anterior than small embryos. This anterior difference leads to scaling properties of the Bcd gradient profiles: in broad regions of the large and small embryos along the A-P axis, normalizing their positions to embryo length reduces the differences in both the nuclear Bcd concentrations and Bcd-encoded positional information. We further trace the origin of Bcd gradient scaling by showing directly that large embryos have more maternally deposited bcd mRNA than small embryos. Our results suggest a simple model for how within-species Bcd gradient scaling can be achieved. In this model, the Bcd production rate, which is dependent on the total number of bcd mRNA molecules in the anterior, is scaled with embryo volume.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética , Hibridación in Situ , Transactivadores/genética
16.
PLoS Genet ; 7(4): e1002053, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21572512

RESUMEN

Transcription factor binding site(s) (TFBS) gain and loss (i.e., turnover) is a well-documented feature of cis-regulatory module (CRM) evolution, yet little attention has been paid to the evolutionary force(s) driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.


Asunto(s)
Sitios de Unión/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Unión Proteica/genética , Selección Genética , Factores de Transcripción/metabolismo , Animales , Evolución Biológica , Bases de Datos Genéticas , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Modelos Genéticos , Mutación , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Transcripción/genética
17.
Evolution ; 65(5): 1388-99, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21121913

RESUMEN

Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation that selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth "stripe allometry") in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species Drosophila simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the "margin of error" for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness.


Asunto(s)
Evolución Biológica , Proteínas de Drosophila/genética , Drosophila/embriología , Drosophila/genética , Animales , Tipificación del Cuerpo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación Genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Selección Genética , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Evolution ; 65(1): 33-42, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20636356

RESUMEN

Pattern formation in Drosophila embryogenesis has been widely investigated as a developmental and evolutionary model of robustness. To ask whether genetic variation for pattern formation is suppressed in this system, artificial selection for divergent egg size was used to challenge the scaling of even-skipped (eve) pattern formation in mitotic cycle 14 (stage 5) embryos of Drosophila melanogaster. Three-dimensional confocal imaging revealed shifts in the allometry of eve pair-rule stripes along both anterior­posterior (A­P) and dorsoventral (D­V) axes as a correlated response to egg size selection, indicating the availability of genetic variation for this buffered trait. Environmental perturbation was not required for the manifestation of this variation. The number of nuclei at the cellular blastoderm stage also changed in response to selection, with large-egg selected lines having more than 1000 additional nuclei relative to small-egg lines. This increase in nuclear number in larger eggs does not scale with egg size, however, as nuclear density is inversely correlated with egg length. Nuclear density varies along the A­P axis but does not correlate with the shift in eve stripe allometry between the selection treatments. Despite its macroevolutionary conservation, both eve stripe patterning and blastoderm cell number vary genetically both within and between closely related species.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Evolución Biológica , Blastodermo , Tipificación del Cuerpo , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Variación Genética , Óvulo/metabolismo , Selección Genética
20.
Mol Biol Evol ; 26(7): 1523-31, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19329651

RESUMEN

Rates of nucleotide substitution and insertion/deletion (indel) are known to vary across the functional components of a genome. Little attention has been paid, however, to the quantitative relationship between the two. Here we investigate the ratio of nucleotide substitutions to indels (S/I) in different regions of 4 primates, 70 bacteria, and 8 other genomes. We find that the ratio differs at 5.4-times between coding and noncoding, 3.3-times between conserved and less conserved coding sequences, and 1.46-times between nonrepeat and repeat regions. The S/I ratio is also positively correlated with the level of divergence between the genomes compared. Our results suggest that the S/I ratio may reflect differences in the efficacy of selection against indels. Due to the sensitivity of indel density in different regions, this ratio varies over a much larger range. With the recent discovery suggesting that indels act as local enhancers of mutation in surrounding sequences, nucleotide substitution rates are expected to be accelerated in regions of low constraint, where indels tend to accumulate, but will otherwise be modulated in proportion to the level of a sequence's functional constraint. Indels, therefore, may play a nontrivial role in controlling differences in genetic variation and divergence across functional regions of a genome.


Asunto(s)
Genoma Humano , Mutación INDEL , Macaca mulatta/genética , Pan troglodytes/genética , Animales , Genoma , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...