Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 232: 115417, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120974

RESUMEN

A new approach for testing drug sensitivity to autooxidative degradation in the solid state is demonstrated in this work. A novel solid-state form of stressing agent for autooxidation has been proposed, based on azobisisobutyronitrile loaded into mesoporous silica carrier particles. The new solid-state form of the stressing agent was applied in degradation studies of two active pharmaceutical ingredients: bisoprolol and abiraterone acetate. The effectiveness and predictivity of the method were evaluated by comparing impurity profiles with those obtained by traditional stability testing of commercial tablets containing the investigated APIs. The results obtained by the new solid-state stressor were also compared with those obtained by an existing method for testing peroxide oxidative degradation in the solid state using a complex of polyvinylpyrrolidone with hydrogen peroxide. It was found that the new silica particle-based stressor was able to effectively predict which impurities could be formed by autooxidation in tablets and that this new approach is complementary to methods for testing peroxide oxidative degradation known from the literature.


Asunto(s)
Peróxidos , Dióxido de Silicio , Comprimidos , Estrés Oxidativo
2.
AAPS PharmSciTech ; 23(7): 274, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207549

RESUMEN

The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.


Asunto(s)
Productos Biológicos , Excipientes , Acetato de Abiraterona , Carbonato de Calcio , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Lactosa , Lípidos/química , Solubilidad , Tensoactivos/química , Agua
3.
Eur J Pharm Sci ; 169: 106087, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863871

RESUMEN

To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.


Asunto(s)
Quitosano , Excipientes , Meloxicam , Solubilidad
4.
Molecules ; 16(5): 3740-60, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21544038

RESUMEN

The gastrointestinal absorption of bisphosphonates is in general only about 1%. To address this problem mixtures of risedronate monosodium salt with twelve varied sugar alcohols, furanoses, pyranoses and eight gluco-, manno- and galactopyranoside derivatives as counterions were designed in an effort to prepare co-crystals/new entities with improved intestinal absorption. Crystalline forms were generated by means of kinetically and/or thermodynamically controlled crystallization processes. One hundred and fifty-two prepared samples were screened by means of FT-NIR and FT-Raman spectroscopy. No co-crystal was prepared, but noteworthy results were obtained. A new solid phase of risedronate monosodium salt generated in the presence of phenyl-ß-d-galactopyranoside under thermodynamically controlled crystallization conditions was found and also characterized using solid state NMR spectroscopy, X-ray powder diffraction and differential scanning calorimetry. This new polymorph was named as form P. Interactions between risedronate monosodium salt and both carbohydrates were confirmed by means of molecular dynamics simulation. In the present study the relationships between the chemical structures of the studied compounds required for crystalline form change are discussed.


Asunto(s)
Carbohidratos/química , Ácido Etidrónico/análogos & derivados , Rastreo Diferencial de Calorimetría , Cristalización , Ácido Etidrónico/química , Galactósidos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Ácido Risedrónico , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...