Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Hum Mol Genet ; 33(R1): R47-R52, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779773

RESUMEN

The mitochondrial oxidative phosphorylation (OXPHOS) system produces the majority of energy required by cells. Given the mitochondrion's endosymbiotic origin, the OXPHOS machinery is still under dual genetic control where most OXPHOS subunits are encoded by the nuclear DNA and imported into mitochondria, while a small subset is encoded on the mitochondrion's own genome, the mitochondrial DNA (mtDNA). The nuclear and mtDNA encoded subunits must be expressed and assembled in a highly orchestrated fashion to form a functional OXPHOS system and meanwhile prevent the generation of any harmful assembly intermediates. While several mechanisms have evolved in eukaryotes to achieve such a coordinated expression, this review will focus on how the translation of mtDNA encoded OXPHOS subunits is tailored to OXPHOS assembly.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Fosforilación Oxidativa , Biosíntesis de Proteínas , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Animales
2.
Nat Metab ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689023

RESUMEN

The oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.

3.
Mol Cell ; 84(2): 345-358.e5, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199007

RESUMEN

Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Péptido Hidrolasas/metabolismo
4.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984987

RESUMEN

Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.


Asunto(s)
Mitocondrias , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Mitocondrias/metabolismo , Fosforilación , Espectrometría de Masas , Proteínas Mitocondriales/metabolismo
5.
PLoS Genet ; 19(1): e1010573, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608143

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.


Asunto(s)
ADN Mitocondrial , Transmisión Vertical de Enfermedad Infecciosa , Animales , Ratones , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Células Germinativas/metabolismo , Mutación , Autofagia/genética , Mamíferos/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
Eur J Trauma Emerg Surg ; 48(1): 567-571, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32451567

RESUMEN

PURPOSE: Despite the high number of patients with phalangeal fractures, evidence-based recommendations for the treatment of specific phalangeal fractures could not be concluded from the literature. The purpose of the present study was to assess current epidemiological data, classification of the fracture type, and mode of treatment. METHODS: This study presents a retrospective review of 261 patients with 283 phalangeal fractures ≥ 18 years of age who were treated in our level I trauma centre between 2017 and 2018. The data were obtained by the analysis of the institution's database, and radiological examinations. RESULTS: The average age of the patients was 40.4 years (range 18-98). The ratio of male to female patients was 2.7:1. The two most typical injury mechanisms were crush injuries (33%) and falls (23%). Most phalangeal fractures occurred in the distal phalanx (P3 43%). The 4th ray (D4 29%) was most frequently affected. The P3 tuft fractures, and the middle phalanx (P2) base fractures each accounted for 25% of fracture types. A total of 74% of fractures were treated conservatively, and 26% required surgery, with Kirschner wire(s) (37%) as the preferred surgical treatment. The decision for surgical treatment correlated with the degree of angular and/or rotational deformity, intraarticular step, and sub-/luxation of specific phalangeal fractures, but not with age and gender. CONCLUSIONS: Our findings demonstrated the popularity of conservative treatment of phalangeal fractures, while surgery was only required in properly selected cases. The correct definition of precise fracture pattern in addition to topography is essential to facilitate treatment decision-making.


Asunto(s)
Falanges de los Dedos de la Mano , Fracturas Óseas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Tratamiento Conservador , Femenino , Falanges de los Dedos de la Mano/diagnóstico por imagen , Fijación Interna de Fracturas , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/epidemiología , Fracturas Óseas/terapia , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
8.
Nat Commun ; 12(1): 529, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483494

RESUMEN

Aberrant splicing is a major cause of rare diseases.  However, its prediction from genome sequence alone remains in most cases inconclusive. Recently, RNA sequencing has proven to be an effective complementary avenue to detect aberrant splicing. Here, we develop FRASER, an algorithm to detect aberrant splicing from RNA sequencing data. Unlike existing methods, FRASER captures not only alternative splicing but also intron retention events. This typically doubles the number of detected aberrant events and identified a pathogenic intron retention in MCOLN1 causing mucolipidosis. FRASER automatically controls for latent confounders, which are widespread and affect sensitivity substantially. Moreover, FRASER is based on a count distribution and multiple testing correction, thus reducing the number of calls by two orders of magnitude over commonly applied z score cutoffs, with a minor loss of sensitivity. Applying FRASER to rare disease diagnostics is demonstrated by reprioritizing a pathogenic aberrant exon truncation in TAZ from a published dataset. FRASER is easy to use and freely available.


Asunto(s)
Algoritmos , Empalme Alternativo , Biología Computacional/métodos , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Internet , Intrones/genética , Programas Informáticos
9.
Cell Rep ; 32(8): 108059, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846138

RESUMEN

The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos
10.
J Inherit Metab Dis ; 43(1): 25-35, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31119744

RESUMEN

Given the rapidly decreasing cost and increasing speed and accessibility of massively parallel technologies, the integration of comprehensive genomic, transcriptomic, and proteomic data into a "multi-omics" diagnostic pipeline is within reach. Even though genomic analysis has the capability to reveal all possible perturbations in our genetic code, analysis typically reaches a diagnosis in just 35% of cases, with a diagnostic gap arising due to limitations in prioritization and interpretation of detected variants. Here we review the utility of complementing genetic data with transcriptomic data and give a perspective for the introduction of proteomics into the diagnostic pipeline. Together these methodologies enable comprehensive capture of the functional consequence of variants, unobtainable by the analysis of each methodology in isolation. This facilitates functional annotation and reprioritization of candidate genes and variants-a promising approach to shed light on the underlying molecular cause of a patient's disease, increasing diagnostic rate, and allowing actionability in clinical practice.


Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Biología de Sistemas/métodos , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Metabolómica/métodos , Proteómica/métodos , Biología de Sistemas/tendencias , Transcriptoma/genética
11.
Orphanet J Rare Dis ; 14(1): 236, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665043

RESUMEN

BACKGROUND: Complex I (CI or NADH:ubiquinone oxidoreductase) deficiency is the most frequent cause of mitochondrial respiratory chain defect. Successful attempts to rescue CI function by introducing an exogenous NADH dehydrogenase, such as the NDI1 from Saccharomyces cerevisiae (ScNDI1), have been reported although with drawbacks related to competition with CI. In contrast to ScNDI1, which is permanently active in yeast naturally devoid of CI, plant alternative NADH dehydrogenases (NDH-2) support the oxidation of NADH only when the CI is metabolically inactive and conceivably when the concentration of matrix NADH exceeds a certain threshold. We therefore explored the feasibility of CI rescue by NDH-2 from Arabidopsis thaliana (At) in human CI defective fibroblasts. RESULTS: We showed that, other than ScNDI1, two different NDH-2 (AtNDA2 and AtNDB4) targeted to the mitochondria were able to rescue CI deficiency and decrease oxidative stress as indicated by a normalization of SOD activity in human CI-defective fibroblasts. We further demonstrated that when expressed in human control fibroblasts, AtNDA2 shows an affinity for NADH oxidation similar to that of CI, thus competing with CI for the oxidation of NADH as opposed to our initial hypothesis. This competition reduced the amount of ATP produced per oxygen atom reduced to water by half in control cells. CONCLUSIONS: In conclusion, despite their promising potential to rescue CI defects, due to a possible competition with remaining CI activity, plant NDH-2 should be regarded with caution as potential therapeutic tools for human mitochondrial diseases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Complejo I de Transporte de Electrón/deficiencia , Fibroblastos/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , NADH NADPH Oxidorreductasas/metabolismo , NADPH Deshidrogenasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , NADH NADPH Oxidorreductasas/genética , NADPH Deshidrogenasa/genética , Superóxido Dismutasa , Transfección
12.
Brain ; 142(1): 50-58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576410

RESUMEN

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.


Asunto(s)
Hidroliasas/deficiencia , Enfermedades Neurodegenerativas/genética , Preescolar , Simulación por Computador , Femenino , Fiebre/complicaciones , Fiebre/metabolismo , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Hidroliasas/genética , Lactante , Cinética , Lentivirus , Masculino , Mitocondrias/metabolismo , Mutación , NAD/análogos & derivados , NAD/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/metabolismo , Cultivo Primario de Células , Secuenciación Completa del Genoma
13.
Am J Hum Genet ; 103(4): 592-601, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30245030

RESUMEN

Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Alelos , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/genética , Femenino , Fibroblastos/patología , Heterogeneidad Genética , Humanos , Lactante , Masculino , Mitocondrias/genética , Fenotipo , Alineación de Secuencia
14.
PLoS One ; 13(7): e0199938, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995917

RESUMEN

The accurate quantification of cellular and mitochondrial bioenergetic activity is of great interest in medicine and biology. Mitochondrial stress tests performed with Seahorse Bioscience XF Analyzers allow the estimation of different bioenergetic measures by monitoring the oxygen consumption rates (OCR) of living cells in multi-well plates. However, studies of the statistical best practices for determining aggregated OCR measurements and comparisons have been lacking. Therefore, to understand how OCR behaves across different biological samples, wells, and plates, we performed mitochondrial stress tests in 126 96-well plates involving 203 fibroblast cell lines. We show that the noise of OCR is multiplicative, that outlier data points can concern individual measurements or all measurements of a well, and that the inter-plate variation is greater than the intra-plate variation. Based on these insights, we developed a novel statistical method, OCR-Stats, that: i) robustly estimates OCR levels modeling multiplicative noise and automatically identifying outlier data points and outlier wells; and ii) performs statistical testing between samples, taking into account the different magnitudes of the between- and within-plate variations. This led to a significant reduction of the coefficient of variation across plates of basal respiration by 45% and of maximal respiration by 29%. Moreover, using positive and negative controls, we show that our statistical test outperforms the existing methods, which suffer from an excess of either false positives (within-plate methods), or false negatives (between-plate methods). Altogether, this study provides statistical good practices to support experimentalists in designing, analyzing, testing, and reporting the results of mitochondrial stress tests using this high throughput platform.


Asunto(s)
Mitocondrias/metabolismo , Análisis de Matrices Tisulares/métodos , Línea Celular , Respiración de la Célula , Metabolismo Energético , Fibroblastos/citología , Modelos Estadísticos , Consumo de Oxígeno
15.
J Inherit Metab Dis ; 41(3): 525-532, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29372369

RESUMEN

Exome wide sequencing techniques have revolutionized molecular diagnostics in patients with suspected inborn errors of metabolism or neuromuscular disorders. However, the diagnostic yield of 25-60% still leaves a large fraction of individuals without a diagnosis. This indicates a causative role for non-exonic regulatory variants not covered by whole exome sequencing. Here we review how systematic RNA-sequencing analysis (RNA-seq, "transcriptomics") lead to a molecular diagnosis in 10-35% of patients in whom whole exome sequencing failed to do so. Importantly, RNA-sequencing based discoveries cannot only guide molecular diagnosis but might also unravel therapeutic intervention points such as antisense oligonucleotide treatment for splicing defects as recently reported for spinal muscular atrophy.


Asunto(s)
Genómica/métodos , Errores Innatos del Metabolismo/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Pruebas Genéticas , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Secuenciación del Exoma
16.
Biochemistry ; 57(5): 861-871, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29283245

RESUMEN

Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged ß2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.


Asunto(s)
Carbocianinas/análisis , Colorantes/análisis , Endocitosis/fisiología , Exocitosis/fisiología , Colorantes Fluorescentes/análisis , Transporte de Proteínas/fisiología , Colorantes de Rosanilina/análisis , Anticuerpos de Cadena Única/análisis , Endosomas/metabolismo , Endosomas/ultraestructura , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Indicadores y Reactivos/análisis , Microscopía Confocal , Receptores Adrenérgicos beta 2/metabolismo
18.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Mitochondrion ; 37: 55-61, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28694194

RESUMEN

LYRM7 is involved in the last steps of mitochondrial complex III assembly where it acts as a chaperone for the Rieske iron­sulfur (Fe-S) protein in the mitochondrial matrix. Using exome sequencing, we identified homozygosity for a splice site destroying 4 base pair deletion in LYRM7 in a child with recurrent lactic acidotic crises and distinct early-onset leukencephalopathy. Sanger sequencing showed variant segregation in similarly affected family members. Functional analyses revealed a reduced amount of the Rieske Fe-S protein, which was restored after re-expression of LYRM7. Our data provide further evidence for the importance of LYRM7 for mitochondrial function and emphasize the importance of whole exome sequencing in the diagnosis of rare mitochondrial diseases.


Asunto(s)
Complejo III de Transporte de Electrones/deficiencia , Mitocondrias/enzimología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Acidosis Láctica/complicaciones , Acidosis Láctica/genética , Acidosis Láctica/patología , Preescolar , Complejo III de Transporte de Electrones/análisis , Femenino , Humanos , Lactante , Leucoencefalopatías/complicaciones , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Eliminación de Secuencia
20.
Nat Commun ; 8: 15824, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28604674

RESUMEN

Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.


Asunto(s)
Perfilación de la Expresión Génica , Enfermedades Mitocondriales/genética , Análisis de Secuencia de ARN , Técnicas y Procedimientos Diagnósticos , Humanos , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...