Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(46): 17389-17397, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37942816

RESUMEN

[V2(HCyclal)2] is prepared by controlled oxidation of vanadium nanoparticles at 50 °C in toluene. The V(0) nanoparticles are synthesized in THF by reduction of VCl3 with lithium naphthalenide. They exhibit very small particle sizes of 1.2 ± 0.2 nm and a high reactivity (e.g. with air or water). By reaction of V(0) nanoparticles with the azacrown ether H4Cyclal, [V2(HCyclal)2] is obtained with deep green crystals and high yield. The title compound exhibits a V(III) dimer (V⋯V: 304.1(1) pm) with two deprotonated [HCyclal]3- ligands as anions. V(0) nanoparticles as well as the sole coordination of V(III) by a crown ether as the ligand and nitrogen as sole coordinating atom are shown for the first time. Magnetic measurements and computational results point to antiferromagnetic coupling within the V(III) couple, establishing an antiferromagnetic spin S = 1 dimer with the magnetic susceptibility determined by the thermal population of the total spin ranging from ST = 0 to ST = 2.

2.
Dalton Trans ; 52(47): 17747-17751, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37970917

RESUMEN

Dy3+ doped SrLaGaO4 exhibits unusually slow relaxation of magnetization determined by two widely separated excited Kramers doublets with a second remagnetization energy barrier of 223 cm-1. This value considerably exceeds that for analogous Ca(Y,Dy)AlO4 in spite of the apparently enlarged Dy3+ coordination sphere.

3.
Dalton Trans ; 52(26): 8893-8903, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310348

RESUMEN

Polycrystalline samples of the magnesium-rich intermetallic compounds RECuMg4 (RE = Dy, Ho, Er, Tm) were synthesized by reaction of the elements in sealed tantalum ampoules heated in a high-frequency induction furnace. Phase purity of the RECuMg4 phases was ascertained by powder X-ray diffraction patterns. Well-shaped single crystals of HoCuMg4 could be grown in a NaCl/KCl salt flux and the crystal structure was refined from single crystal X-ray diffraction data: TbCuMg4 structure-type, space group Cmmm, a = 1361.4(2), b = 2039.3(4), c = 384.62(6) pm. The crystal structure of the RECuMg4 phases can be understood as a complex intergrowth variant of CsCl and AlB2 related slabs. The remarkable crystal chemical motif concerns the orthorhombically distorted bcc-like magnesium cubes with Mg-Mg distances ranging from 306 to 334 pm. At high temperatures DyCuMg4 and ErCuMg4 are Curie-Weiss paramagnets with paramagnetic Curie-Weiss temperatures of -15 K and -2 K for RE = Dy and Er, respectively. The effective magnetic moments, 10.66µB for RE = Dy and 9.65µB for RE = Er prove stable trivalent ground states for the rare earth cations. Magnetic susceptibility and heat capacity measurements reveal long-range antiferromagnetic ordering at low temperatures (<21 K). Whereas DyCuMg4 exhibits two subsequent antiferromagnetic transitions at TN = 21 and 7.9 K which successively remove half of the entropy of a doublet crystal field ground state of Dy, ErCuMg4 shows a single, possibly broadened, antiferromagnetic transition at 8.6 K. The successive antiferromagnetic transitions are discussed with respect to magnetic frustration in the tetrameric units present in the crystal structure.

4.
Inorg Chem ; 62(9): 3965-3975, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36821862

RESUMEN

The two new ternary amalgams K1-xRbxHg11 [x = 0.472(7)] and Cs3-xCaxHg20 [x = 0.20(3)] represent two different examples of how to create ternary compounds from binaries by statistical atom substitution. K1-xRbxHg11 is a Vegard-type mixed crystal of the isostructural binaries KHg11 and RbHg11 [cubic, BaHg11 structure type, space group Pm3̅m, a = 9.69143(3) Å, Rietveld refinement], whereas Cs3-xCaxHg20 is a substitution variant of the Rb3Hg20 structure type [cubic, space group Pm3̅n, a = 10.89553(14) Å, Rietveld refinement] for which a fully substituted isostructural binary Ca phase is unknown. In K1-xRbxHg11, the valence electron concentration (VEC) is not changed by the substitution, whereas in Cs3-xCaxHg20, the VEC increases with the Ca content. Amalgams of electropositive metals form polar metal bonds and show "bad metal" properties. By thermal analysis, magnetic susceptibility and resistivity measurements, and density functional theory calculations of the electronic structures, we investigate the effect of the structural disorder introduced by creating mixed-atom occupation on the physical properties of the two new polar amalgam systems.

5.
J Am Chem Soc ; 144(36): 16272-16275, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044247

RESUMEN

We examined what interactions control the sign and strength of the interlayer coupling in van der Waals ferromagnets such as Fe3-xGeTe2, Cr2Ge2Te6, CrI3, and VI3 to find that high-spin orbital interactions across the van der Waals gaps are a key to understanding their ferromagnetism. Interlayer ferromagnetic coupling in Fe3-xGeTe2, Cr2Ge2Te6, and CrI3 is governed by the high-spin two-orbital two-electron destabilization, but that in VI3 by the high-spin four-orbital two-electron stabilization. These interactions explain a number of seemingly puzzling observations in van der Waals ferromagnets.

6.
Nat Mater ; 21(6): 627-633, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35228661

RESUMEN

(Ba,K)BiO3 constitute an interesting class of superconductors, where the remarkably high superconducting transition temperature Tc of 30 K arises in proximity to charge density wave order. However, the precise mechanism behind these phases remains unclear. Here, enabled by high-pressure synthesis, we report superconductivity in (Ba,K)SbO3 with a positive oxygen-metal charge transfer energy in contrast to (Ba,K)BiO3. The parent compound BaSbO3-δ shows a larger charge density wave gap compared to BaBiO3. As the charge density wave order is suppressed via potassium substitution up to 65%, superconductivity emerges, rising up to Tc = 15 K. This value is lower than the maximum Tc of (Ba,K)BiO3, but higher by more than a factor of two at comparable potassium concentrations. The discovery of an enhanced charge density wave gap and superconductivity in (Ba,K)SbO3 indicates that strong oxygen-metal covalency may be more essential than the sign of the charge transfer energy in the main-group perovskite superconductors.

7.
ACS Omega ; 6(20): 13375-13383, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34056484

RESUMEN

Nanosized samples of the cubic thiospinel FeCr2S4 were synthesized by ball milling of FeS and Cr2S3 precursors followed by a distinct temperature treatment between 500 and 800 °C. Depending on the applied temperature, volume weighted mean (L vol) particle sizes of 56 nm (500 °C), 86 nm (600 °C), and 123 nm (800 °C) were obtained. All samples show a transition into the ferrimagnetic state at a Curie temperature T C of ∼ 167 K only slightly depending on the annealing temperature. Above T C, ferromagnetic spin clusters survive and Curie-Weiss behavior is observed only at T ≫ T C, with T depending on the heat treatments and the external magnetic field applied. Zero-field-cooled and field-cooled magnetic susceptibilities diverge significantly below T C in contrast to what is observed for conventionally solid-state-prepared polycrystalline samples. In the low-temperature region, all samples show a transition into the orbital ordered state at about 9 K, which is more pronounced for the samples heated to higher temperatures. This observation is a clear indication that the cation disorder is very low because a pronounced disorder would suppress this magnetic transition. The unusual magnetic properties of the samples at low temperatures and different external magnetic fields can be clearly related to different factors like structural microstrain and magnetocrystalline anisotropy.

8.
Dalton Trans ; 50(12): 4202-4209, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33683265

RESUMEN

A series of new ternary isostructural R4Co2C3 (R = Y, Gd, Tb) carbides was synthesized by annealing of arc-melted stoichiometric samples. The crystal structure of Tb4Co2C3 [space group P2/m, Pearson symbol mP18, a = 12.754(2) Å, b = 3.6251(4) Å, c = 7.0731(9) Å, ß = 105.601(6)°] was solved by direct methods from neutron powder diffraction data collected at 100 K. The room temperature unit cell parameters of the new phases were determined by X-ray powder diffraction technique. The crystal structure of Tb4Co2C3 is characterized as an intergrowth structure resulting from the stacking of alternating TbCoC (YCoC-type) and Tb2C (anti-CdCl2 type) fragments with a 2 : 1 ratio. Tb4Co2C3 orders ferromagnetically at TC = 35(1) K, whereas the isostructural Gd4Co2C3 reveals two magnetic transitions at TC1 = 82(3) K and TC2 = 13(2) K. Density functional theory (DFT) calculations confirm that the magnetic moments of the R4Co2C3 (R = Gd, Tb) carbides are exclusively due to the rare-earth elements. Y4Co2C3 is shown to be a Pauli-paramagnet by experimental and theoretical studies.

9.
Molecules ; 26(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498484

RESUMEN

In this review on spin exchanges, written to provide guidelines useful for finding the spin lattice relevant for any given magnetic solid, we discuss how the values of spin exchanges in transition metal magnetic compounds are quantitatively determined from electronic structure calculations, which electronic factors control whether a spin exchange is antiferromagnetic or ferromagnetic, and how these factors are related to the geometrical parameters of the spin exchange path. In an extended solid containing transition metal magnetic ions, each metal ion M is surrounded with main-group ligands L to form an MLn polyhedron (typically, n = 3-6), and the unpaired spins of M are represented by the singly-occupied d-states (i.e., the magnetic orbitals) of MLn. Each magnetic orbital has the metal d-orbital combined out-of-phase with the ligand p-orbitals; therefore, the spin exchanges between adjacent metal ions M lead not only to the M-L-M-type exchanges, but also to the M-L…L-M-type exchanges in which the two metal ions do not share a common ligand. The latter can be further modified by d0 cations A such as V5+ and W6+ to bridge the L…L contact generating M-L…A…L-M-type exchanges. We describe several qualitative rules for predicting whether the M-L…L-M and M-L…A…L-M-type exchanges are antiferromagnetic or ferromagnetic by analyzing how the ligand p-orbitals in their magnetic orbitals (the ligand p-orbital tails, for short) are arranged in the exchange paths. Finally, we illustrate how these rules work by analyzing the crystal structures and magnetic properties of four cuprates of current interest: -CuV2O6, LiCuVO4, (CuCl)LaNb2O7, and Cu3(CO3)2(OH)2.


Asunto(s)
Iones/química , Magnetismo , Metales/química , Teoría Cuántica , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Estructura Molecular , Fenómenos Físicos , Elementos de Transición
10.
RSC Adv ; 11(12): 6926-6933, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35423173

RESUMEN

Tb-diluted and Tb-rich apatite-type silicates with compositions Y7.75Tb0.25Ca2(SiO4)6O2 and Tb8Ca2(SiO4)6O2, respectively, exhibit field induced multiple slow relaxation of magnetization. The former reveals two slow relaxation paths, the latter only one with a longer relaxation time of several seconds. The relaxation features of the Tb-diluted one are comparable with those of analogue compounds, where Tb is replaced by Dy, as well as with those of a Tb-doped calcium phosphate apatite. The relaxation parameters of the Tb-rich compound virtually match those of the Dy-based analogue Dy8Ca2(SiO4)6O2. The latter represents the first instance of independence of magnetization relaxation on the nature of a paramagnetic rare-earth metal ion in single ion magnet like materials.

11.
Inorg Chem ; 59(24): 18319-18324, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33289382

RESUMEN

Neutron diffraction studies on magnetic solids composed of axially elongated CoO4X2 (X = Cl, Br, S, Se) octahedra show that the ordered magnetic moments of their high-spin Co2+ (d7, S = 3/2) ions are greater than 3 µB, i.e., the spin moment expected for S = 3/2 ions, and increase almost linearly from 3.22 to 4.45 µB as the bond-length ratio rCo-X/rCo-O increases from 1.347 to 1.659 where rCo-X and rCo-O are the Co-X and Co-O bond lengths, respectively. These observations imply that the orbital moments of the Co2+ ions increase linearly from 0.22 to 1.45 µB with increasing the rCo-X/rCo-O ratio from 1.347 to 1.659. We probed this implication by examining the condition for unquenched orbital moment and also by evaluating the magnetic moments of the Co2+ ions based on DFT+U+SOC calculations for those systems of the CoO4X2 octahedra. Our work shows that the orbital moments of the Co2+ ions are essentially quenched and, hence, that the observations of the neutron diffraction studies are not explained by the current theory of magnetic moments. This discrepancy between experiment and theory urges one to check the foundations of the current theory of magnetic moments as well as the current method of neutron diffraction refinements for ordered magnetic structures.

12.
Dalton Trans ; 49(6): 2014-2023, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31989121

RESUMEN

Apatite-type silicates Y7.75Dy0.25Ca2(SiO4)6O2 and Dy8Ca2(SiO4)6O2 were prepared by high-temperature solid state synthesis. In the crystal lattice, Dy3+ partially substitutes Ca2+, preferably at the 6h Ca2-site, and forms a short bond of 2.2 Å with the intra-channel O2-. The imposed strong ligand field anisotropy provides large magnetic anisotropy, which manifests itself as slow relaxation of magnetization at low temperatures. The magnetic dynamics is characterized by three or two characteristic values of relaxation time, respectively, which may be attributed to a single Dy3+ center. A phenomenological model is proposed which explains this response in terms of single paramagnetic center multiple relaxation.

13.
RSC Adv ; 10(62): 37588-37595, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35515162

RESUMEN

Dy-Mg silicate Dy8Mg2(SiO4)6O2 has been prepared by high-temperature solid state reaction. It has an apatite type structure (P63/m) with the Dy atoms fully occupying the 6h site and being in random distribution with the Mg atoms at the 4f site. The compound reveals dual magnetization relaxation with widely varying contributions from fast (FR) and slow (SR) relaxation paths controlled by field and temperature. The SR path is stabilized by a strong magnetic field, exhibits a weak dependence of relaxation time τ on field and temperature, and sustains large τ of a few seconds up to a temperature of 40 K and under a field of 50 kOe. The analysis of the electronic structure and comparison with the known Dy-doped phosphate apatites suggests that the Orbach and Raman processes are suppressed.

14.
ACS Omega ; 4(12): 15168-15174, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31552362

RESUMEN

The new quaternary iodate KCu(IO3)3 has been prepared by hydrothermal synthesis. KCu(IO3)3 crystallizes in the monoclinic space group P21/n with unit cell parameters a = 9.8143(4) Å, b = 8.2265(4) Å, c = 10.8584(5) Å, ß = 91.077(2)°, and z = 4. The crystals are light blue and translucent. There are three main building units making up the crystal structure: [KO10] irregular polyhedra, [CuO6] distorted octahedra, and [IO3] trigonal pyramids. The Jahn-Teller elongated [CuO6] octahedra connect to each other via corner sharing to form [CuO5]∞ zigzag chains along [010]; the other building blocks separate these chains. The Raman modes can be divided into four groups; the lower two groups into mainly lattice modes involving K and Cu displacements and the upper two groups into mainly bending and stretching modes of [IO3E], where E represents a lone pair of electron. At low temperatures, the magnetic susceptibility is characterized by a broad maximum centered at ∼5.4 K, characteristic for antiferromagnetic short-range ordering. Long-range magnetic ordering at T C = 1.32 K is clearly evidenced by a sharp anomaly in the heat capacity. The magnetic susceptibility can be very well described by a spin S = 1/2 antiferromagnetic Heisenberg chain with a nearest-neighbor spin exchange of ∼8.9 K.

15.
Inorg Chem ; 58(19): 12888-12894, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31518128

RESUMEN

We discovered superconductivity at 4.8 K in the hexagonal layered compound La2IRu2 comprising a triangular lattice of the La and a honeycomb lattice of the Ru atoms. First-principles calculations reveal a two-dimensional band structure made up of La 5d and Ru 4d electrons and formal oxidation states +1.5 for the La and the uncommon oxidation state -1 for the Ru atoms. The temperature dependence of the specific heat indicates fully gapped superconductivity. Nevertheless, the upper critical field of this compound violates the Pauli limit. We argue that the high upper critical field is ascribed to an antisymmetric spin-orbit coupling in the unique multilayer structure.

16.
Dalton Trans ; 48(16): 5299-5307, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30933206

RESUMEN

Tb for Ca substituted hydroxyapatite ceramic samples with composition Ca10-xTbx(PO4)6(OH1-x/2-δ)2, where x = 0.1, 0.5, were synthesized by solid-state reaction at 1300 °C in air, and their crystal structure, vibrational spectra, luminescence, and magnetic properties were studied. Implanting Tb3+ into the calcium apatite crystal lattice results in formation of an effective TbO+ ion which displays a short terbium-oxygen bond of 2.15 Å and a stretching vibration at 534 cm-1. The Tb3+ electronic structure has been revealed by analyzing the luminescence spectra and dc/ac magnetization data. Accordingly, the ground state represents a pseudo doublet with MJ = ±6 and the first exited level is by 112 cm-1 higher in energy. The ion exhibits field induced magnetic bistability with the magnetization reversing over the first exited state. Three paths of magnetization relaxation with field-temperature controlled switching between the paths have been identified.

17.
Inorg Chem ; 57(15): 9115-9121, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995399

RESUMEN

The new CoBi2O2F4 compound was synthesized by a hydrothermal method at 230 °C. Single-crystal X-ray diffraction data were used to determine the crystal structure. The compound is layered and belongs to the Aurivillius family of compounds. The present compound is the first oxo-fluoride Aurivillius phase containing Co2+. Inclusion of a d-block cation with such a low oxidation state as 2+ was achieved by partially replacing O2- with F- ions. The crystal structure is best described in the tetragonal noncentrosymmetric space group I4̅ with unit-cell parameters a = 3.843(2) Å and c = 16.341(8) Å. The crystal structure consists of two main building units: [BiO4F4] distorted cubes and [CoF6] octahedra. Interestingly, since the octahedra [CoF6] tilt between four equivalent positions, the F atoms occupy a 4-fold split position at room temperature. For the investigation of the structural disorder, Raman scattering data were collected in the range from 10 K to room temperature. As the temperature decreases, sharper phonon peaks appear and several modes clearly appear, which indicates a reduction of the disorder. Magnetic susceptibility and heat capacity measurements evidence long-range antiferromagnetic ordering below the Néel temperature of ∼50 K. The magnetic susceptibility is in agreement with the Curie-Weiss law above 75 K with a Curie-Weiss temperature of θCW = -142(2) K.

18.
Dalton Trans ; 47(25): 8209-8220, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29870036

RESUMEN

Long-term crystallisation from aqueous copper(ii)-acetate solution after the addition of ammonia at 25 °C led to the formation of a hitherto poorly characterised phase in the verdigris pigment system Cu(CH3COO)2-Cu(OH)2-H2O. Laboratory X-ray powder diffraction (XRPD) was successfully employed to solve the crystal structure. The structure solution reveals a phase composition of the Cu3(CH3COO)4(OH)2·5H2O ≡ 2-1-5 phase, which was also confirmed by thermal analysis. The 2-1-5 phase crystallises in space group P21/c (14) with lattice parameters of a = 12.4835(2) Å, b = 14.4246(2) Å, c = 10.7333(1) Å and ß = 102.871(1)°. The crystal structure consists of Cu2(CH3COO)2(CH3COO)1/2(OH)4/3H2O1/6+ dimers that are interconnected by Cu(CH3COO)(CH3COO)1/2(OH)2/31/6- squares forming chains running in the c-direction. Non-coordinating hydrate water molecules are intercalated inbetween the chains and mediate the inter-chain interaction. IR and Raman spectroscopy techniques were also employed to confirm selected aspects of the determined crystal structure. The magnetic properties of the 2-1-5 phase decompose into two independent subsystems: a strongly antiferromagnetically spin exchange coupled magnetic Cu-Cu dimer and a significantly weaker coupled Cu monomer. The light blue colour of the sample originates from a reflectance maximum at 488 nm and significantly differs from the known verdigris phases. An investigation of several historic verdigris pigment samples revealed that this phase occurs both as a minor and a major component. Hence, our reference data for the title compound will help to improve the understanding of the multiphase mixtures occurring in historic verdigris samples.

19.
Inorg Chem ; 57(8): 4640-4648, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29613786

RESUMEN

Single crystals of the new compound Cu2(SeO3)F2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu2(SeO3)F2 is isostructural with the previously described compounds Co2TeO3F2 and CoSeO3F2. The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO3F3] octahedra, within which [SeO3] trigonal pyramids are present in voids and are connected to [CuO3F3] octahedra by corner sharing. The presence of a single local environment in both the 19F and 77Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of µeff ∼ 2.2 µB. Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

20.
Sci Adv ; 4(2): eaar2317, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29492459

RESUMEN

Recent interest in topological semimetals has led to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry, and the introduction of magnetic order can influence these states by breaking time-reversal symmetry. We show that we can realize a rich variety of different topological semimetal states in a single material, CeSbTe. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. Therefore, it allows for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological phase with an eightfold band crossing at a high-symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology. We also show that we can generally expand the numbers of space groups that allow for high-order band degeneracies by introducing antiferromagnetic order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...