Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1128, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284160

RESUMEN

Most human genetic variation is classified as variants of uncertain significance. While advances in genome editing have allowed innovation in pooled screening platforms, many screens deal with relatively simple readouts (viability, fluorescence) and cannot identify the complex cellular phenotypes that underlie most human diseases. In this paper, we present a generalizable functional genomics platform that combines high-content imaging, machine learning, and microraft isolation in a method termed "Raft-Seq". We highlight the efficacy of our platform by showing its ability to distinguish pathogenic point mutations of the mitochondrial regulator Mitofusin 2, even when the cellular phenotype is subtle. We also show that our platform achieves its efficacy using multiple cellular features, which can be configured on-the-fly. Raft-Seq enables a way to perform pooled screening on sets of mutations in biologically relevant cells, with the ability to physically capture any cell with a perturbed phenotype and expand it clonally, directly from the primary screen.


Asunto(s)
Edición Génica , Genómica , Humanos , Mutación , Genómica/métodos , Fenotipo , Mitocondrias/genética
2.
Genome Res ; 30(12): 1716-1726, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208454

RESUMEN

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Asunto(s)
Análisis de Secuencia de ADN/veterinaria , Cromosoma X/genética , Cromosoma Y/genética , Animales , Bovinos , Linaje de la Célula , Intercambio Genético , Evolución Molecular , Femenino , Amplificación de Genes , Humanos , Masculino , Ratones , Especificidad de Órganos , Testículo/química
3.
Nat Genet ; 49(3): 387-394, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28135246

RESUMEN

After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line.


Asunto(s)
Aves/genética , Dosificación de Gen/genética , Mamíferos/genética , Factores de Transcripción/genética , Cromosoma Y/genética , Animales , Evolución Molecular , Femenino , Humanos , Masculino , Procesos de Determinación del Sexo/genética , Cromosoma X/genética
4.
Cell ; 159(4): 800-13, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417157

RESUMEN

We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.


Asunto(s)
Evolución Biológica , Cromosomas de los Mamíferos , Ratones Endogámicos C57BL/genética , Análisis de Secuencia de ADN , Cromosoma Y , Animales , Centrómero , Cromosomas Artificiales Bacterianos/genética , Femenino , Humanos , Masculino , Filogenia , Primates/genética , Cromosoma X
5.
Nature ; 508(7497): 494-9, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24759411

RESUMEN

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Asunto(s)
Evolución Molecular , Dosificación de Gen/genética , Mamíferos/genética , Cromosoma Y/genética , Animales , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Enfermedad , Femenino , Regulación de la Expresión Génica , Salud , Humanos , Masculino , Marsupiales/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Biosíntesis de Proteínas/genética , Estabilidad Proteica , Selección Genética/genética , Homología de Secuencia , Caracteres Sexuales , Espermatogénesis/genética , Testículo/metabolismo , Transcripción Genética/genética , Síndrome de Turner/genética , Cromosoma X/genética
6.
Nature ; 483(7387): 82-6, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22367542

RESUMEN

The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.


Asunto(s)
Cromosomas Humanos Y/genética , Secuencia Conservada/genética , Evolución Molecular , Eliminación de Gen , Macaca mulatta/genética , Cromosoma Y/genética , Animales , Intercambio Genético/genética , Amplificación de Genes/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Pan troglodytes/genética , Mapeo de Híbrido por Radiación , Selección Genética/genética , Factores de Tiempo
8.
Nature ; 466(7306): 612-6, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20622855

RESUMEN

In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.


Asunto(s)
Pollos/genética , Cromosomas Humanos X/genética , Evolución Molecular , Genes/genética , Cromosomas Sexuales/genética , Animales , Femenino , Eliminación de Gen , Genoma/genética , Humanos , Masculino , Familia de Multigenes/genética , Caracteres Sexuales , Testículo/metabolismo
9.
Chromosoma ; 118(1): 53-69, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18726609

RESUMEN

In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.


Asunto(s)
Pollos/genética , Evolución Molecular , Genoma/genética , Ornitorrinco/genética , Cromosomas Sexuales/genética , Animales , Línea Celular , Cromatina/metabolismo , Cromosomas Artificiales Bacterianos , Fibroblastos , Hibridación Fluorescente in Situ , Masculino , Mamíferos , Espermatozoides/citología
10.
Genome Res ; 18(6): 965-73, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18463302

RESUMEN

In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.


Asunto(s)
Evolución Molecular , Ornitorrinco/genética , Cromosomas Sexuales , Animales , Aves/genética , Cromosomas Artificiales Bacterianos , Cromosomas Humanos X , Genes , Humanos , Mapeo Físico de Cromosoma
11.
Genome Res ; 18(6): 986-94, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18463304

RESUMEN

When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules.


Asunto(s)
Evolución Molecular , Ornitorrinco/genética , Ponzoñas/genética , beta-Defensinas/genética , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Reptiles/genética , Sintenía , alfa-Defensinas/genética , beta-Defensinas/química , beta-Defensinas/clasificación
12.
Chromosome Res ; 15(8): 961-74, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18185982

RESUMEN

Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations.


Asunto(s)
Cromosomas de los Mamíferos/genética , Ornitorrinco/genética , Cromosomas Sexuales/genética , Animales , Células Cultivadas , Bandeo Cromosómico , Mapeo Cromosómico , Pintura Cromosómica , Cromosomas Artificiales Bacterianos , Femenino , Fibroblastos , Genoma , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Metafase
13.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15815621

RESUMEN

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Asunto(s)
Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 4/genética , Animales , Composición de Base , Secuencia de Bases , Centrómero/genética , Secuencia Conservada/genética , Islas de CpG/genética , Eucromatina/genética , Etiquetas de Secuencia Expresada , Duplicación de Gen , Variación Genética/genética , Genómica , Humanos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Polimorfismo Genético/genética , Primates/genética , Proteínas/genética , Seudogenes/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN no Traducido/análisis , ARN no Traducido/genética , Recombinación Genética/genética , Análisis de Secuencia de ADN
14.
Nature ; 432(7018): 761-4, 2004 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-15592415

RESUMEN

Strategies for assembling large, complex genomes have evolved to include a combination of whole-genome shotgun sequencing and hierarchal map-assisted sequencing. Whole-genome maps of all types can aid genome assemblies, generally starting with low-resolution cytogenetic maps and ending with the highest resolution of sequence. Fingerprint clone maps are based upon complete restriction enzyme digests of clones representative of the target genome, and ultimately comprise a near-contiguous path of clones across the genome. Such clone-based maps are used to validate sequence assembly order, supply long-range linking information for assembled sequences, anchor sequences to the genetic map and provide templates for closing gaps. Fingerprint maps are also a critical resource for subsequent functional genomic studies, because they provide a redundant and ordered sampling of the genome with clones. In an accompanying paper we describe the draft genome sequence of the chicken, Gallus gallus, the first species sequenced that is both a model organism and a global food source. Here we present a clone-based physical map of the chicken genome at 20-fold coverage, containing 260 contigs of overlapping clones. This map represents approximately 91% of the chicken genome and enables identification of chicken clones aligned to positions in other sequenced genomes.


Asunto(s)
Pollos/genética , Genoma , Genómica , Mapeo Físico de Cromosoma , Animales , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Mapeo Contig , Dermatoglifia del ADN , Ligamiento Genético/genética , Lugares Marcados de Secuencia
15.
Nature ; 418(6899): 743-50, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12181558

RESUMEN

A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.


Asunto(s)
Genoma , Ratones/genética , Mapeo Físico de Cromosoma/métodos , Animales , Cromosomas/genética , Cromosomas Humanos Par 6/genética , Clonación Molecular , Secuencia Conservada/genética , Mapeo Contig/métodos , Genoma Humano , Humanos , Datos de Secuencia Molecular , Mapeo de Híbrido por Radiación , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...