Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Hum Genet ; 110(3): 427-441, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787739

RESUMEN

Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Humanos , Alelos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología
2.
Diabetologia ; 65(5): 763-776, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35169870

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS: We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS: The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION: By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Epigenoma , Islas de CpG/genética , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Prospectivos
3.
PLoS One ; 15(9): e0237792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881892

RESUMEN

BACKGROUND: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. METHODS: We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). RESULTS: We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively; P-value < 5×10-8) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84×10-8). CONCLUSIONS: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. IMPACT: Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci.


Asunto(s)
Sitios Genéticos , Predisposición Genética a la Enfermedad , Variación Genética , Células Germinativas/metabolismo , Sarcoma de Ewing/genética , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento/genética , Oportunidad Relativa , Polimorfismo de Nucleótido Simple/genética
6.
Am J Hum Genet ; 105(1): 15-28, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178129

RESUMEN

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.


Asunto(s)
Adiponectina/genética , Tejido Adiposo/patología , Exoma/genética , Predisposición Genética a la Enfermedad , Lípidos/análisis , Obesidad/etiología , Polimorfismo de Nucleótido Simple , Tejido Adiposo/metabolismo , Adolescente , Adulto , Negro o Afroamericano/genética , Anciano , Anciano de 80 o más Años , Femenino , Hispánicos o Latinos/genética , Humanos , Masculino , Persona de Mediana Edad , Obesidad/patología , Fenotipo , Sitios de Carácter Cuantitativo , Población Blanca/genética , Adulto Joven
7.
Br J Nutr ; 122(3): 309-321, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31182174

RESUMEN

Animal sterols, plant sterols and bile acids in stool samples have been suggested as biomarkers of dietary intake. It is still unknown whether they also reflect long-term habitual dietary intake and can be used in aetiological research. In a subgroup of the Cooperative Health Research in the Augsburg Region (KORA FF4) study, habitual dietary intake was estimated based on repeated 24-h food list and a FFQ. Stool samples were collected according to a standard operating procedure and those meeting the quality criteria were extracted and analysed by means of a metabolomics technique. The present study is based on data from 513 men and 495 women with a mean age of 60 and 58 years, respectively, for which faecal animal and plant sterols and bile acids concentrations and dietary intake data were available. In adjusted regression models, the associations between food intake and log-normalised metabolite concentrations were analysed. Bonferroni correction was used to account for multiple testing. In this population-based sample, associations between habitual dietary intake and faecal concentrations of animal sterols were identified, while the impact of usual diet on bile acids was limited. A habitual diet high in 'fruits' and 'nuts and seeds' is associated with lower animal faecal sterols concentrations, whereas a diet high in 'meat and meat products' is positively related to faecal concentrations of animal sterols. A positive association between glycocholate and fruit consumption was found. Further studies are necessary for evaluation of faecal animal sterols as biomarkers of diet. The findings need to be confirmed in other populations with diverse dietary habits.


Asunto(s)
Ácidos y Sales Biliares/análisis , Dieta , Ingestión de Alimentos , Heces/química , Esteroles/análisis , Adulto , Anciano , Antropometría , Biomarcadores/análisis , Colesterol/metabolismo , Fibras de la Dieta/análisis , Femenino , Frutas , Alemania/epidemiología , Ácido Glicocólico/metabolismo , Humanos , Estilo de Vida , Masculino , Carne/análisis , Metabolómica , Persona de Mediana Edad , Nueces , Fitosteroles , Semillas , Encuestas y Cuestionarios
8.
Dev Psychopathol ; 31(2): 419-431, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606180

RESUMEN

Epigenetic DNA modifications in genes related to the hypothalamic-pituitary-adrenal (HPA) axis are discussed as a mechanism underlying the association between prenatal depression and altered child HPA activity. In a longitudinal study, DNA methylation changes related to prenatal depressive symptoms were investigated in 167 children aged 6 to 9 years. At six candidate genes, 126 cytosine-guanine dinucleotides were considered without correcting for multiple testing due to the exploratory nature of the study. Further associations with the basal child HPA activity were examined. Children exposed to prenatal depressive symptoms exhibited lower bedtime cortisol (p = .003, ηp2 = 0.07) and a steeper diurnal slope (p = .023, ηp2 = 0.06). For total cortisol release, prenatal exposure was related to lower cortisol release in boys, and higher release in girls. Furthermore, prenatal depressive symptoms were associated with altered methylation in the glucocorticoid receptor gene (NR3C1), the mineralocorticoid receptor gene (NR3C2), and the serotonin receptor gene (SLC6A4), with some sex-specific effects (p = .012-.040, ηp2 = 0.03-0.04). In boys, prenatal depressive symptoms predicted bedtime cortisol mediated by NR3C2 methylation, indirect effect = -0.07, 95% confidence interval [-0.16, -0.02]. Results indicate relations of prenatal depressive symptoms to both child basal HPA activity and DNA methylation, partially fitting a mediation model, with exposed boys and girls being affected differently.


Asunto(s)
Metilación de ADN , Depresión/metabolismo , Hidrocortisona/análisis , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adulto , Niño , Depresión/genética , Epigénesis Genética , Femenino , Humanos , Estudios Longitudinales , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
9.
Diabetes ; 68(1): 188-197, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396904

RESUMEN

Recent studies suggest that insulin-like growth factor binding protein 2 (IGFBP-2) may protect against type 2 diabetes, but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Adulto , Anciano , Glucemia/metabolismo , Metilación de ADN/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos
10.
Nat Commun ; 9(1): 3184, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093639

RESUMEN

Ewing sarcoma (EWS) is a pediatric cancer characterized by the EWSR1-FLI1 fusion. We performed a genome-wide association study of 733 EWS cases and 1346 unaffected individuals of European ancestry. Our study replicates previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1, and identifies new loci at 6p25.1, 20p11.22 and 20p11.23. Effect estimates exhibit odds ratios in excess of 1.7, which is high for cancer GWAS, and striking in light of the rarity of EWS cases in familial cancer syndromes. Expression quantitative trait locus (eQTL) analyses identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ). The 20p11.22 locus is near NKX2-2, a highly overexpressed gene in EWS. Interestingly, most loci reside near GGAA repeat sequences and may disrupt binding of the EWSR1-FLI1 fusion protein. The high locus to case discovery ratio from 733 EWS cases suggests a genetic architecture in which moderate risk SNPs constitute a significant fraction of risk.


Asunto(s)
Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Sarcoma de Ewing/genética , Alelos , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Genotipo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Humanos , Proteínas Nucleares , Proteínas de Fusión Oncogénica/genética , Polimorfismo de Nucleótido Simple , Proteína Proto-Oncogénica c-fli-1/genética , Control de Calidad , Sitios de Carácter Cuantitativo , Proteína EWS de Unión a ARN/genética , Riesgo , Sarcoma de Ewing/etnología , Factores de Transcripción/genética , Población Blanca , Proteínas de Pez Cebra
11.
Front Behav Neurosci ; 12: 125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997484

RESUMEN

Prenatal alcohol exposure (PAE) is known to elicit a broad range of systemic effects, including neurophysiological alterations that result in adverse behavioral and cognitive outcomes. However, molecular pathways underlying these long-term intrauterine effects remain to be investigated. Here, we tested a hypothesis that PAE may lead to epigenetic alterations to the DNA resulting in attentional and cognitive alterations of the children. We report the results of the study that included 156 primary school children of the Franconian Cognition and Emotion Studies (FRANCES) cohort which were tested for an objective marker of PAE, ethyl glucuronide (EtG) in meconium at birth. Thirty-two newborns were found to be exposed to alcohol with EtG values above 30 ng/g (EtG+). Previously we described PAE being associated with lower IQ and smaller amplitude of the event-related potential component P3 in go trials (Go-P3), which indicates a reduced capacity of attentional resources. Whole-genome methylation analysis of the buccal cell DNA revealed 193 differentially methylated genes in children with positive meconium EtG, that were clustered into groups involved in epigenetic modifications, neurodegeneration, neurodevelopment, axon guidance and neuronal excitability. Furthermore, we detected mediation effects of the methylation changes in DPP10 and SLC16A9 genes on the EtG related cognitive and attention-related deficits. Our results suggest that system-wide epigenetic changes are involved in long-term effects of PAE. In particular, we show an epigenetic mediation of PAE effects on cognition and attention-related processes.

12.
Hum Mol Genet ; 27(3): 546-558, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186428

RESUMEN

Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Progranulinas/sangre , Animales , Genotipo , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/metabolismo
13.
Nat Commun ; 8(1): 744, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963451

RESUMEN

There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 × 10-10, 6.0 × 10-5, and 2.9 × 10-3). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.


Asunto(s)
Estatura/genética , Peso Corporal/genética , Población Blanca/genética , Antropometría , Índice de Masa Corporal , Tamaño Corporal/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 16/genética , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 7/genética , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Fenotipo , Relación Cintura-Cadera
14.
Curr Opin Clin Nutr Metab Care ; 20(4): 266-271, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28441146

RESUMEN

PURPOSE OF REVIEW: Glucose metabolism is a central process in mammalian energy homeostasis. Its deregulation is a key factor in development of metabolic disease like diabetes and cancer. In recent decades, our understanding of gene regulation at the signaling, chromatin and posttranscriptional levels has seen dramatic developments. RECENT FINDINGS: A number of epigenetic mechanisms that do not affect the genetic code can be assessed with new technologies. However, increasing complexity becomes a major challenge for translation into clinical application. SUMMARY: The current review provides an update of transcriptional control of glucose metabolism, focusing on epigenetic regulators, DNA-methylation, histone modifications and noncoding RNAs. Recent studies heavily support the importance of those mechanisms for future therapeutics and preventive efforts for metabolic diseases.


Asunto(s)
Epigénesis Genética/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Acetilación , Animales , Metilación de ADN/fisiología , Código de Histonas/fisiología , Histonas/metabolismo , Humanos , Enfermedades Metabólicas/prevención & control , Enfermedades Metabólicas/terapia , Metilación , ARN no Traducido
15.
Proc Natl Acad Sci U S A ; 114(14): 3613-3618, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28265093

RESUMEN

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.


Asunto(s)
Histona Desacetilasas/genética , Placa Aterosclerótica/complicaciones , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , alfa 1-Antitripsina/genética , Regiones no Traducidas 3' , Medición de Intercambio de Deuterio , Estudios de Asociación Genética , Humanos , Elastasa de Leucocito/metabolismo , Espectrometría de Masas , Placa Aterosclerótica/genética , Accidente Cerebrovascular/etiología , alfa 1-Antitripsina/metabolismo
16.
Horm Metab Res ; 49(5): 343-349, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28351093

RESUMEN

Angiopoietin-like protein 8 (ANGPTL8)/betatrophin expression in visceral adipose tissue and associations with circulating fatty acid profile have not yet been investigated.Forty subjects were included in a cross-sectional study, 57 in a dietary weight reduction intervention. Circulating Angiopoietin-like protein 8/betatrophin was measured in all subjects. Liver and adipose tissue were sampled and plasma fatty acids and tissue Angiopoietin-like protein 8/betatrophin expression were evaluated in the cross-sectional study. In the intervention study oral glucose testing and liver magnetic resonance scanning at baseline and after 6 months were performed. Angiopoietin-like protein 8/betatrophin mRNA was increased in visceral compared to subcutaneous adipose tissue (p<0.001). Circulating ANGPTL8/betatrophin correlated with liver steatosis (r=0.42, p=0.047), triacylglycerols (r=0.34, p=0.046), saturated (r=0.43, p=0.022), monounsaturated (r=0.51, p=0.007), and polyunsaturated fatty acids (r=-0.53, p=0.004). In the intervention study, baseline Angiopoietin-like protein 8/betatrophin correlated with age (r=0.32, p=0.010) and triacylglycerols (r=0.30, p=0.02) and was increased with hepatic steatosis (p=0.033). Weight loss reduced liver fat by 45% and circulating Angiopoietin-like protein 8/betatrophin by 11% (288±17 vs. 258±17 pg/ml; p=0.015). Angiopoietin-like protein 8/betatrophin is related to liver steatosis, while visceral adipose tissue represents an additional site of expression in humans.


Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Hígado Graso/genética , Grasa Intraabdominal/metabolismo , Hormonas Peptídicas/genética , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/metabolismo , Estudios de Cohortes , Dieta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Hormonas Peptídicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
PLoS One ; 12(3): e0172995, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28296976

RESUMEN

AIMS: Dilated cardiomyopathy (DCM) is an important cause of heart failure with a strong familial component. We performed an exome-wide array-based association study (EWAS) to assess the contribution of missense variants to sporadic DCM. METHODS AND RESULTS: 116,855 single nucleotide variants (SNVs) were analyzed in 2796 DCM patients and 6877 control subjects from 6 populations of European ancestry. We confirmed two previously identified associations with SNVs in BAG3 and ZBTB17 and discovered six novel DCM-associated loci (Q-value<0.01). The lead-SNVs at novel loci are common and located in TTN, SLC39A8, MLIP, FLNC, ALPK3 and FHOD3. In silico fine mapping identified HSPB7 as the most likely candidate at the ZBTB17 locus. Rare variant analysis (MAF<0.01) demonstrated significant association for TTN variants only (P = 0.0085). All candidate genes but one (SLC39A8) exhibit preferential expression in striated muscle tissues and mutations in TTN, BAG3, FLNC and FHOD3 are known to cause familial cardiomyopathy. We also investigated a panel of 48 known cardiomyopathy genes. Collectively, rare (n = 228, P = 0.0033) or common (n = 36, P = 0.019) variants with elevated in silico severity scores were associated with DCM, indicating that the spectrum of genes contributing to sporadic DCM extends beyond those identified here. CONCLUSION: We identified eight loci independently associated with sporadic DCM. The functions of the best candidate genes at these loci suggest that proteostasis regulation might play a role in DCM pathophysiology.


Asunto(s)
Cardiomiopatía Dilatada/genética , Exoma , Predisposición Genética a la Enfermedad , Humanos , Mutación Missense , Polimorfismo de Nucleótido Simple
18.
Nature ; 541(7635): 81-86, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002404

RESUMEN

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Asunto(s)
Adiposidad/genética , Índice de Masa Corporal , Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Epigenómica , Estudio de Asociación del Genoma Completo , Obesidad/genética , Tejido Adiposo/metabolismo , Pueblo Asiatico/genética , Sangre/metabolismo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Europa (Continente)/etnología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , India/etnología , Masculino , Obesidad/sangre , Obesidad/complicaciones , Sobrepeso/sangre , Sobrepeso/complicaciones , Sobrepeso/genética , Población Blanca/genética
19.
Hepatol Res ; 47(9): 890-901, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27689765

RESUMEN

AIMS: Molecular adaptations in human non-alcoholic fatty liver disease (NAFLD) are incompletely understood. This study investigated the main gene categories related to hepatic de novo lipogenesis and lipid oxidation capacity. METHODS: Liver specimens of 48 subjects were histologically classified according to steatosis severity. In-depth analyses were undertaken using real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. Lipid profiles were analyzed by gas chromatography/flame ionization detection, and effects of key fatty acids were studied in primary human hepatocytes. RESULTS: Real-time polymerase chain reaction, immunoblotting, and immunohistochemistry indicated 5'AMP-activated protein kinase (AMPK) to be increased with steatosis score ≥ 2 (all P < 0.05), including various markers of de novo lipogenesis and lipid degradation (all P < 0.05). Regarding endoplasmic reticulum stress, X-Box binding protein-1 (XBP1) was upregulated in steatosis score ≥ 2 (P = 0.029) and correlated with plasma palmitate (r = 0.34; P = 0.035). Palmitate incubation of primary human hepatocytes increased XBP1 and downstream stearoyl CoA desaturase-1 mRNA expression (both P < 0.05). Moreover, plasma and liver tissue exposed a NAFLD-related lipid profile with reduced polyunsaturated/saturated fatty acid ratio, increased palmitate and palmitoleate, and elevated lipogenesis and desaturation indices with steatosis score ≥ 2 (all P < 0.05). CONCLUSION: In humans with advanced fatty liver disease, hepatic AMPK protein is upregulated, potentially in a compensatory manner. Moreover, pathways of lipid synthesis and degradation are co-activated in subjects with advanced steatosis. Palmitate may drive lipogenesis by activating XBP1-mediated endoplasmic reticulum stress and represent a target for future dietary or pharmacological intervention.

20.
Hum Mol Genet ; 25(18): 4127-4142, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27559109

RESUMEN

More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N = 5758) followed by replication (N = 3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.


Asunto(s)
Diarrea/genética , Fucosiltransferasas/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Alelos , Preescolar , Diarrea/patología , Femenino , Genotipo , Humanos , Lactante , Masculino , Polimorfismo de Nucleótido Simple , Galactósido 2-alfa-L-Fucosiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...