Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6697, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795272

RESUMEN

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Dicroismo Circular , Microscopía por Crioelectrón , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Espectrometría de Masas en Tándem , Temperatura
2.
Biotechnol J ; 13(7): e1700523, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29663661

RESUMEN

To develop highly concentrated therapeutic antibodies enabling convenient subcutaneous application, well stabilizing pharmaceutical formulations with low viscosities are considered to be key. The purpose of this study is to select specific amino acid combinations that reduce and balance aggregation, fragmentation and chemical degradation, and also lower viscosity of highly concentrated liquid antibodies. As a model, the therapeutically well-established antibody trastuzumab (25->200 mg mL-1 ) in liquid formulation is used. Pre-testing of formulations based on a stabilizing and protecting solutions (SPS®) platform is conducted in a thermal unfolding model using differential scanning fluorimetry (DSF) and accelerated aging at 37 and 45 °C. Pre-selected amino acid combinations are further iteratively adjusted to obtain stable highly concentrated antibody formulations with low viscosity. Size exclusion chromatography (SE-HPLC) reveals significantly lower aggregation and fragmentation at specific amino acid:sugar and protein:excipient ratios. Dynamic viscosities <20 mPa * s of highly concentrated trastuzumab (≥200 mg mL-1 ) are measured by falling ball viscosimetry. Moreover, less chemical degradation is found by cationic exchange chromatography (CEX-HPLC) even after 6 months liquid storage at 25 °C. In conclusion, specifically tailored and advanced amino acid-based liquid formulations avoid aggregation and enable the development of stable and low viscous highly concentrated biopharmaceuticals.


Asunto(s)
Aminoácidos/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Animales , Anticuerpos Monoclonales/análisis , Células CHO , Cromatografía en Gel , Cricetinae , Cricetulus , Fluorometría , Humanos , Estabilidad Proteica , Desplegamiento Proteico , Temperatura , Trastuzumab , Viscosidad
3.
Sci Rep ; 5: 17058, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26593036

RESUMEN

Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas Nucleares/química , Fosfoproteínas Fosfatasas/química , Receptores de Glucocorticoides/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(40): E3780-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043785

RESUMEN

The small heat shock protein αB-crystallin is an oligomeric molecular chaperone that binds aggregation-prone proteins. As a component of the proteostasis system, it is associated with cataract, neurodegenerative diseases, and myopathies. The structural determinants for the regulation of its chaperone function are still largely elusive. Combining different experimental approaches, we show that phosphorylation-induced destabilization of intersubunit interactions mediated by the N-terminal domain (NTD) results in the remodeling of the oligomer ensemble with an increase in smaller, activated species, predominantly 12-mers and 6-mers. Their 3D structures determined by cryo-electron microscopy and biochemical analyses reveal that the NTD in these species gains flexibility and solvent accessibility. These modulated properties are accompanied by an increase in chaperone activity in vivo and in vitro and a more efficient cooperation with the heat shock protein 70 system in client folding. Thus, the modulation of the structural flexibility of the NTD, as described here for phosphorylation, appears to regulate the chaperone activity of αB-crystallin rendering the NTD a conformational sensor for nonnative proteins.


Asunto(s)
Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Cadena B de alfa-Cristalina/química , Cromatografía en Gel , Clonación Molecular , Microscopía por Crioelectrón , Electroforesis en Gel de Poliacrilamida , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Chaperonas Moleculares/metabolismo , Fosforilación , Colorantes de Rosanilina , Cadena B de alfa-Cristalina/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(23): 9493-8, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690622

RESUMEN

Oxidant-mediated antibacterial response systems are broadly used to control bacterial proliferation. Hypochlorite (HOCl) is an important component of the innate immune system produced in neutrophils and specific epithelia. Its antimicrobial activity is due to damaging cellular macromolecules. Little is known about how bacteria escape HOCl-inflicted damage. Recently, the transcription factor YjiE was identified that specifically protects Escherichia coli from HOCl killing. According to its function, YjiE is now renamed HypT (hypochlorite-responsive transcription factor). Here we unravel that HypT is activated by methionine oxidation to methionine sulfoxide. Interestingly, so far only inactivation of cellular proteins by methionine oxidation has been reported. Mutational analysis revealed three methionines that are essential to confer HOCl resistance. Their simultaneous substitution by glutamine, mimicking the methionine sulfoxide state, increased the viability of E. coli cells upon HOCl stress. Triple glutamine substitution generates a constitutively active HypT that regulates target genes independently of HOCl stress and permanently down-regulates intracellular iron levels. Inactivation of HypT depends on the methionine sulfoxide reductases A/B. Thus, microbial protection mechanisms have evolved along the evolution of antimicrobial control systems, allowing bacteria to survive within the host environment.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/inmunología , Ácido Hipocloroso/metabolismo , Inmunidad Innata/inmunología , Metionina/metabolismo , Modelos Moleculares , Estrés Oxidativo/inmunología , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Cromatografía en Gel , Análisis Mutacional de ADN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Hierro/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/química , Proteínas Represoras/genética , Ultracentrifugación
6.
Biochemistry ; 52(12): 2089-96, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23418749

RESUMEN

Human aryl hydrocarbon receptor (AHR) interacting protein (AIP) and AIP like 1 (AIPL1) are cochaperones of Hsp90 which share 49% sequence identity. Both proteins contain an N-terminal FKBP-like prolyl peptidyl isomerase (PPIase) domain followed by a tetratricopeptide repeat (TPR) domain. In addition, AIPL1 harbors a unique C-terminal proline-rich domain (PRD). Little is known about the functional relevance of the individual domains and how these contribute to the association with Hsp90. In this study, we show that these cochaperones differ from other Hsp90-associated PPIase as their FKBP domains are enzymatically inactive. Furthermore, in contrast to other large PPIases, AIP is inactive as a chaperone. AIPL1, however, exhibits chaperone activity and prevents the aggregation of non-native proteins. The unique proline-rich domain of AIPL1 is important for its chaperone function as its truncation severely affects the ability of AIPL1 to bind non-native proteins. Furthermore, the proline-rich domain decreased the affinity of AIPL1 for Hsp90, implying that this domain acts as a negative regulator of the Hsp90 interaction besides being necessary for efficient binding of AIPL1 to non-native proteins.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Dicroismo Circular , Proteínas del Ojo/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Prolina/química , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Resonancia por Plasmón de Superficie , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(50): 20407-12, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184973

RESUMEN

Small heat shock proteins (sHsps) are molecular chaperones that prevent the aggregation of nonnative proteins. The sHsps investigated to date mostly form large, oligomeric complexes. The typical bacterial scenario seemed to be a two-component sHsps system of two homologous sHsps, such as the Escherichia coli sHsps IbpA and IbpB. With a view to expand our knowledge on bacterial sHsps, we analyzed the sHsp system of the bacterium Deinococcus radiodurans, which is resistant against various stress conditions. D. radiodurans encodes two sHsps, termed Hsp17.7 and Hsp20.2. Surprisingly, Hsp17.7 forms only chaperone active dimers, although its crystal structure reveals the typical α-crystallin fold. In contrast, Hsp20.2 is predominantly a 36mer that dissociates into smaller oligomeric assemblies that bind substrate proteins stably. Whereas Hsp20.2 cooperates with the ATP-dependent bacterial chaperones in their refolding, Hsp17.7 keeps substrates in a refolding-competent state by transient interactions. In summary, we show that these two sHsps are strikingly different in their quaternary structures and chaperone properties, defining a second type of bacterial two-component sHsp system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Homología de Secuencia de Aminoácido , Estrés Fisiológico
8.
J Bacteriol ; 194(5): 1075-87, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194454

RESUMEN

Retrophosphorylation of the histidine kinase CheA in the chemosensory transduction chain is a widespread mechanism for efficient dephosphorylation of the activated response regulator. First discovered in Sinorhizobium meliloti, the main response regulator CheY2-P shuttles its phosphoryl group back to CheA, while a second response regulator, CheY1, serves as a sink for surplus phosphoryl groups from CheA-P. We have identified a new component in this phospho-relay system, a small 97-amino-acid protein named CheS. CheS has no counterpart in enteric bacteria but revealed distinct similarities to proteins of unknown function in other members of the α subgroup of proteobacteria. Deletion of cheS causes a phenotype similar to that of a cheY1 deletion strain. Fluorescence microscopy revealed that CheS is part of the polar chemosensory cluster and that its cellular localization is dependent on the presence of CheA. In vitro binding, as well as coexpression and copurification studies, gave evidence of CheA/CheS complex formation. Using limited proteolysis coupled with mass spectrometric analyses, we defined CheA(163-256) to be the CheS binding domain, which overlaps with the N-terminal part of the CheY2 binding domain (CheA(174-316)). Phosphotransfer experiments using isolated CheA-P showed that dephosphorylation of CheY1-P but not CheY2-P is increased in the presence of CheS. As determined by surface plasmon resonance spectroscopy, CheY1 binds ∼100-fold more strongly to CheA/CheS than to CheA. We propose that CheS facilitates signal termination by enhancing the interaction of CheY1 and CheA, thereby promoting CheY1-P dephosphorylation, which results in a more efficient drainage of the phosphate sink.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal , Sinorhizobium meliloti/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Membrana Celular/química , Citosol/química , Eliminación de Gen , Espectrometría de Masas , Microscopía Fluorescente , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Homología de Secuencia de Aminoácido , Sinorhizobium meliloti/química , Resonancia por Plasmón de Superficie
9.
FASEB J ; 24(10): 3633-42, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20501794

RESUMEN

Small heat shock proteins (sHsps) are molecular chaperones involved in maintaining protein homeostasis; they have also been implicated in protein folding diseases and in cancer. In this protein family, a conserved core domain, the so-called α-crystallin or Hsp20 domain, is flanked by highly variable, nonconserved sequences that are essential for chaperone function. Analysis of 8714 sHsps revealed a broad variation of primary sequences within the superfamily as well as phyla-dependent differences. Significant variations were found in the number of sHsps per genome, their amino acid composition, and the length distribution of the different sequence parts. Reconstruction of the evolutionary tree for the sHsp superfamily shows that the flanking regions fall into several subgroups, indicating that they were remodeled several times in parallel but independent of the evolution of the α-crystallin domain. The evolutionary history of sHsps is thus set apart from that of other protein families in that two exon boundary-independent strategies are combined: the evolution of the conserved α-crystallin domain and the independent evolution of the N- and C-terminal sequences. This scenario allows for increased variability in specific small parts of the protein and thus promotes functional and structural differentiation of sHsps, which is not reflected in the general evolutionary tree of species.


Asunto(s)
Evolución Molecular , Proteínas de Choque Térmico/genética , Filogenia
10.
Mol Biochem Parasitol ; 172(2): 129-40, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20403389

RESUMEN

Toxoplasma gondii is among the most successful parasites, with nearly half of the human population chronically infected. Recently a link between the T. gondii Hsp90 chaperone machinery and parasite development was observed. Here, the T. gondii Hsp90 co-chaperones p23 and Hip were identified mining the Toxoplasma- database (www.toxodb.org). Their identity was confirmed by domain structure and blast analysis. Additionally, analysis of the secondary structure and studies on the chaperone function of the purified protein verified the p23 identity. Studies of co-immunoprecipitation (co-IP) identified two different types of complexes, one comprising at least Hip-Hsp70-Hsp90 and another containing at least p23-Hsp90. Indirect immunofluorescence assays showed that Hip is localized in the cytoplasm in tachyzoites and as well in bradyzoites. For p23 in contrast, a solely cytoplasmic localization was only observed in the tachyzoite stage whereas nuclear and cytosolic distribution and co-localization with Hsp90 was observed in bradyzoites. These results indicate that the T. gondii Hsp90-heterocomplex cycle is similar to the one proposed for higher eukaryotes, further highlighting the implication of the Hsp90/p23 in parasite development. Furthermore, co-IP experiments of tachyzoite/bradyzoite lysates with anti-p23 antiserum and identification of the complexed proteins together with the use of the curated interaction data available from different source (orthologs and Plasmodium databases) allowed us to construct an interaction network (interactome) covering the dynamics of the Hsp90 chaperone machinery.


Asunto(s)
Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Núcleo Celular/química , Biología Computacional , Citoplasma/química , ADN Protozoario/química , ADN Protozoario/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunoprecipitación , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
11.
Biochim Biophys Acta ; 1793(11): 1738-48, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19699241

RESUMEN

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones which prevent the nonspecific aggregation of non-native proteins. Five potential sHsps exist in the parasite Toxoplasma gondii. They are located in different intracellular compartments including mitochondria and are differentially expressed during the parasite's life cycle. Here, we analyzed the structural and functional properties of all five proteins. Interestingly, this first in vitro characterization of sHsps from protists showed that all T. gondii sHsps exhibit the characteristic properties of sHsps such as oligomeric structure and chaperone activity. However, differences in their quaternary structure and in their specific chaperone properties exist. On the structural level, the T. gondii sHsps can be divided in small (12-18 subunits) and large (24-32 subunits) oligomers. Furthermore, they differ in their interaction with non-native proteins. While some bind substrates tightly, others interact more transiently. The chaperone activity of the three more mono-disperse T. gondii sHsps is regulated by temperature with a decrease in temperature leading to the activation of chaperone activity, suggesting an adaption to specific steps of the parasite's life cycle.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/genética , Filogenia , Proteínas Protozoarias/genética , Toxoplasma/genética , Secuencias de Aminoácidos/fisiología , Animales , Proteínas de Choque Térmico Pequeñas/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA