Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 192, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612728

RESUMEN

BACKGROUND: Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies-genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines. RESULTS: We find that CRISPR screens accurately identify more gene dependencies per cell line, but the majority of each cell line's dependencies are part of a set of 1867 genes that are shared dependencies across the entire collection (pan-lethals). While RNAi knockdown of about 30% of these genes is also pan-lethal, approximately 50% have selective dependency patterns across cell lines, suggesting they could still be cancer vulnerabilities. The accuracy of the unique RNAi selectivity is supported by associations to multi-omics profiles, drug sensitivity, and other expected co-dependencies. CONCLUSIONS: Incorporating RNAi data for genes that are pan-lethal knockouts facilitates the discovery of a wider range of gene targets than could be detected using the CRISPR dataset alone. This can aid in the interpretation of contrasting results obtained from CRISPR and RNAi screens and reinforce the importance of partial gene suppression methods in building a cancer dependency map.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Neoplasias/genética , Técnicas Genéticas , Interferencia de ARN , Línea Celular
2.
BMC Med Genomics ; 8: 41, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205789

RESUMEN

BACKGROUND: Adipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. Although autologous grafting of whole fat has long been practiced, a major clinical limitation of this technique is inconsistent long-term graft retention. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype. METHODS: Microarray analysis was performed on total RNA extracted from separate ACS isolates of six human adult females before and after 7 days (7 days: early stage) and 21 days (21 days: late stage) of adipocyte differentiation in vitro. Differential gene expression profiles were determined using Partek Genomics Suite Version 6.4 for analysis of variance (ANOVA) based on time in culture. We also performed unsupervised hierarchical clustering to test for gene expression patterns among the three cell populations. Ingenuity Pathway Analysis was used to determine biologically significant networks and canonical pathways relevant to adipogenesis. RESULTS: Cells at each stage showed remarkable intra-group consistency of expression profiles while abundant differences were detected across stages and groups. More than 14,000 transcripts were significantly altered during differentiation while ~6000 transcripts were affected between 7 days and 21 days cultures. Setting a cutoff of +/-two-fold change, 1350 transcripts were elevated while 2929 genes were significantly decreased by 7 days. Comparison of early and late stage cultures revealed increased expression of 1107 transcripts while 606 genes showed significantly reduced expression. In addition to confirming differential expression of known markers of adipogenesis (e.g., FABP4, ADIPOQ, PLIN4), multiple genes and signaling pathways not previously known to be involved in regulating adipogenesis were identified (e.g. POSTN, PPP1R1A, FGF11) as potential novel mediators of adipogenesis. Quantitative RT-PCR validated the microarray results. CONCLUSIONS: ASC maturation into an adipocyte phenotype proceeds from a gene expression program that involves thousands of genes. This is the first study to compare mRNA expression profiles during early and late stage adipogenesis using cultured human primary ASCs from multiple patients.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Células Madre Adultas/citología , Diferenciación Celular/genética , Linaje de la Célula/genética , Perfilación de la Expresión Génica , Adulto , Femenino , Humanos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células del Estroma/citología
3.
PLoS One ; 9(1): e79079, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454681

RESUMEN

BACKGROUND: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. METHODS: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. RESULTS: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. SIGNIFICANCE: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC.


Asunto(s)
Adenocarcinoma/genética , Aneuploidia , Variaciones en el Número de Copia de ADN , Neoplasias Esofágicas/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano , Supervivencia sin Enfermedad , Receptores ErbB/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Femenino , Dosificación de Gen , Estudios de Asociación Genética , Humanos , Hibridación Fluorescente in Situ , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Recurrencia Local de Neoplasia/mortalidad , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-myc/genética , Receptor ErbB-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...