Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(9): 6181-6187, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39096318

RESUMEN

Controlling the assembly of high-order structures is central to soft-matter and biomaterial engineering. Angle-resolved linear dichroism can probe the ordering of chiral collagen molecules in the dense state. Collagen triple helices were aligned by solvent evaporation. Their ordering gives a strong linear dichroism (LD) that changes sign and intensity with varying sample orientations with respect to the beam linear polarization. Being complementary to circular dichroism, which probes the structure of chiral (bio)molecules, LD can shift from the molecular to the supramolecular scale and from the investigation of the conformation to interactions. Supported by multiphoton microscopy and X-ray scattering, we show that LD provides a straightforward route to probe collagen alignment, determine the packing density, and monitor denaturation. This approach could be adapted to any assembly of chiral (bio)macromolecules, with key advantages in detecting large-scale assemblies with high specificity to aligned and chiral molecules and improved sensitivity compared to conventional techniques.


Asunto(s)
Materiales Biocompatibles , Dicroismo Circular , Colágeno , Materiales Biocompatibles/química , Colágeno/química , Dicroismo Circular/métodos , Animales , Difracción de Rayos X/métodos
2.
Langmuir ; 39(2): 728-738, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36584287

RESUMEN

In modern laser technologies, there is a need for coatings that would be compatible with flexible substrates while retaining the advantages of inorganic compounds in terms of robustness. As a first step in this direction, we developed here thin films of lanthanide oxysulfide, of optical quality, prepared by low-temperature dip coating. As a model compound in the family of oxysulfides, (Gd,Ce)2O2S anisotropic nanoplates were used. The films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and in situ UV and IR spectroscopic ellipsometry, showing that the band gap of the materials was preserved through the deposition process. The thickness of the films was tuned in a broad range, from a few nanometers to 150 nm, using different concentrations of the colloidal suspensions as well as single-layer and multilayer deposition. Lastly, thermal treatment of the thin films was optimized to remove the stabilizing organic ligands of the nanoparticles while preserving their integrity, as confirmed by SEM and XRD.

3.
ACS Appl Bio Mater ; 3(5): 2948-2957, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025341

RESUMEN

Rebuilding biological environments is crucial when facing the challenges of fundamental and biomedical research. Thus, preserving the native state of biomolecules is essential. We use electrospinning (ES), which is an extremely promising method for the preparation of fibrillar membranes to mimic the ECM of native tissues. Here, we report for the first time (1) the ES of pure and native collagen into a self-supported membrane in absence of cross-linker and polymer support, (2) the preservation of the membrane integrity in hydrated media in absence of cross-linker, and (3) the preservation of the native molecular structure and recovery of the hierarchical assembly of collagen. We use a multiscale approach to characterize collagen native structure at the molecular level using circular dichroism, and to investigate collagen hierarchical organization within the self-supported membrane using a combination of multiphoton and electron microscopies. Finally, we show that the membranes are perfectly suited for cell adhesion and spreading, making them very promising candidates for the development of biomaterials and finding applications in biomedical research.

4.
Science ; 360(6386): 296-299, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674588

RESUMEN

Soft deformable materials are needed for applications such as stretchable electronics, smart textiles, or soft biomedical devices. However, the design of a durable, cost-effective, or biologically compatible version of such a material remains challenging. Living animal cells routinely cope with extreme deformations by unfolding preformed membrane reservoirs available in the form of microvilli or membrane folds. We synthetically mimicked this behavior by creating nanofibrous liquid-infused tissues that spontaneously form similar reservoirs through capillarity-induced folding. By understanding the physics of membrane buckling within the liquid film, we developed proof-of-concept conformable chemical surface treatments and stretchable basic electronic circuits.

5.
Langmuir ; 33(37): 9288-9297, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28482152

RESUMEN

Aqueous lithium-air batteries have very high theoretical energy densities, which potentially makes this technology very interesting for energy storage in electric mobility applications. However, the aqueous electrolyte requires the use of a watertight layer to protect the lithium metal, typically a thick NASICON glass-ceramic layer, which adds ohmic resistance and penalizes performance. This article deals with the replacement of this ceramic electrolyte by a hybrid organic-inorganic membrane. This new membrane combines an ionically conducting inorganic phase for Li ion transport (Li1.3Al0.3Ti1.7(PO4)3 (LATP) and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer for water tightness and mechanical properties. The Li ion transport through the membrane is ensured by an interconnected 3-D network of crystalline LATP fibers obtained by coupling an electrospinning process with the sol-gel synthesis followed by thermal treatment. After an impregnation step with PVDF-HFP, hybrid membranes with different volumetric fractions of PVDF-HFP were synthesized. These membranes are watertight and have Li ion conductivities ranging from 10-5 to 10-4 mS/cm. The conductivity depends on the PVDF-HFP volume fraction and the fibers' alignment in the membrane thickness, which in turn can be tuned by adjusting the water content in the electrospinning chamber during the process. The alignment of fibers parallel to the membrane surface is conductive to poor conductivity values whereas a disordered fiber mat leads to interesting conductivity values (1 × 10-4 mS/cm) at ambient temperature.

6.
Nano Lett ; 12(7): 3872-7, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22725257

RESUMEN

The properties of mesoporous materials hinge on control of their composition, pore dimensions, wall thickness, and the size and shape of the crystallite building units. We create ordered mesoporous materials in which all of these parameters are independently controlled. Different sizes (from 4.5 to 8 nm) and shapes (spheres and rods) of ligand-stripped nanocrystals are assembled using the same structure-directing block copolymers, which contain a tethering domain designed to adsorb to their naked surfaces. Material compositions range from metal oxides (Sn-doped In(2)O(3) or ITO, CeO(2), TiO(2)) to metal fluorides (Yb,Er-doped NaYF(4)) and metals (FePt). The incorporation of new types of nanocrystals into mesoporous architectures can lead to enhanced performance. For example, TiO(2) nanorod-based materials withstand >1000 electrochemical cycles without significant degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA