Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Luminescence ; 38(10): 1750-1757, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37464921

RESUMEN

Samarium (Sm3+ )-doped glass has sparked a rising interest in demonstrating a noticeable emission in the range of 400-700, which is advantageous in solid-state lasers in the visible region, colour displays, undersea communication, and optical memory devices. This study reports the fabrication of Sm3+ -doped bismuth-germanium-borate glasses were established using a standard melt-quenching technique and inspection by absorption, steady-state luminescence, and transient studies. The typical peaks of Sm3+ ions were detected in the visible range under 403 nm excitation. A strong emission band was detected at 599 nm that resembles the 4 G5/2 →6 H7/2 transition of Sm3+ ions for BGBiNYSm0.5 glass. Furthermore, a reddish-orange (coral) luminescence at 646 nm that resembles the 4 G5/2 →6 H9/2 transition was also perceived. The stimulated emission cross-section of 4 G5/2 level for BGBiNYSm0.5 glass was 0.39 × 10-22  cm2 . Lifetime of the 4 G5/2 level was enhanced for the BGBiNYSm0.5 glass and decreased with an increase in active ion concentrations. The lifetime quenching of ions at the metastable state was because of energy transfer among Sm3+ ions by cross-relaxation channels. Commission Internationale de l'Éclairage (CIE) coordinates were evaluated from the emission spectra. Moreover, all the findings recommend these glass as light-emitting materials in the coral region at 599 nm for solid-state lighting applications.


Asunto(s)
Germanio , Samario , Bismuto , Boratos , Luminiscencia , Vidrio , Iones
2.
Sci Rep ; 6: 21905, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26915817

RESUMEN

Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

3.
Opt Express ; 23(4): 4630-40, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836500

RESUMEN

We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...