Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect ; 84(3): 351-354, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953910

RESUMEN

INTRODUCTION: India reported a severe public health challenge not only due to the COVID-19 outbreak but also the increasing number of associated mucormycosis cases since 2021.This study aimed at developing artificial intelligence based models to predict the risk of mucormycosis among the patients at the time of discharge from hospital. METHODS: The dataset included of 1229 COVID-19 positive patients, and additional 214 inpatients, COVID-19 positive as well as infected with mucormycosis. We used logistic regression, decision tree and random forest and the extreme gradient boosting algorithm. All our models were evaluated with 5-fold validation to derive a reliable estimate of the model error. RESULTS: The logistic regression, XGBoost and random forest performed equally well with AUROC 95.0, 94.0, and 94.0 respectively. The best accuracy and precision (PPV) were 0.91 ± 0.026 and 0.67 ± 0.0526, respectively achieved by XGBoost, followed by logistic regression. This study also determined top five variables namely obesity, anosmia, de novo diabetes, myalgia, and nasal discharge, which showed positive impact towards the risk of mucormycosis. CONCLUSION: The developed model has the potential to predict the patients at high risk and thus, consequently initiating preventive care or aiding in early detection of mucormycosis infection. Thus, this study, holds potential for early treatment and better management of patients suffering from COVID-19 associated mucormycosis.


Asunto(s)
COVID-19 , Mucormicosis , Inteligencia Artificial , COVID-19/epidemiología , Hospitales Públicos , Humanos , India/epidemiología , Mucormicosis/epidemiología , SARS-CoV-2 , Sobrevivientes
2.
Comput Math Methods Med ; 2021: 8036304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552660

RESUMEN

Pneumonitis is an infectious disease that causes the inflammation of the air sac. It can be life-threatening to the very young and elderly. Detection of pneumonitis from X-ray images is a significant challenge. Early detection and assistance with diagnosis can be crucial. Recent developments in the field of deep learning have significantly improved their performance in medical image analysis. The superior predictive performance of the deep learning methods makes them ideal for pneumonitis classification from chest X-ray images. However, training deep learning models can be cumbersome and resource-intensive. Reusing knowledge representations of public models trained on large-scale datasets through transfer learning can help alleviate these challenges. In this paper, we compare various image classification models based on transfer learning with well-known deep learning architectures. The Kaggle chest X-ray dataset was used to evaluate and compare our models. We apply basic data augmentation and fine-tune our feed-forward classification head on the models pretrained on the ImageNet dataset. We observed that the DenseNet201 model outperforms other models with an AUROC score of 0.966 and a recall score of 0.99. We also visualize the class activation maps from the DenseNet201 model to interpret the patterns recognized by the model for prediction.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Neumonía/diagnóstico por imagen , Neumonía/diagnóstico , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , COVID-19/diagnóstico , COVID-19/diagnóstico por imagen , Biología Computacional , Bases de Datos Factuales , Humanos , Neumonía/clasificación , Interpretación de Imagen Radiográfica Asistida por Computador/estadística & datos numéricos , SARS-CoV-2
3.
Healthcare (Basel) ; 9(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067129

RESUMEN

Chronic kidney disease (CKD) represents a heavy burden on the healthcare system because of the increasing number of patients, high risk of progression to end-stage renal disease, and poor prognosis of morbidity and mortality. The aim of this study is to develop a machine-learning model that uses the comorbidity and medication data obtained from Taiwan's National Health Insurance Research Database to forecast the occurrence of CKD within the next 6 or 12 months before its onset, and hence its prevalence in the population. A total of 18,000 people with CKD and 72,000 people without CKD diagnosis were selected using propensity score matching. Their demographic, medication and comorbidity data from their respective two-year observation period were used to build a predictive model. Among the approaches investigated, the Convolutional Neural Networks (CNN) model performed best with a test set AUROC of 0.957 and 0.954 for the 6-month and 12-month predictions, respectively. The most prominent predictors in the tree-based models were identified, including diabetes mellitus, age, gout, and medications such as sulfonamides and angiotensins. The model proposed in this study could be a useful tool for policymakers in predicting the trends of CKD in the population. The models can allow close monitoring of people at risk, early detection of CKD, better allocation of resources, and patient-centric management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...