Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38445733

RESUMEN

Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI"). While the efficiency of PEI of embedded clusters is lower than for CTI by about factor 10, both the mean sizes of detected water clusters and the relative yields of unprotonated cluster ions are significantly larger, making PEI a "soft ionization" scheme. However, the tendency of ions to remain bound to HNDs leads to a reduced detection efficiency for large HNDs containing >104 helium atoms. These results are instrumental in determining optimal conditions for mass spectrometry and photoionization spectroscopy of molecular complexes and clusters aggregated in HNDs.

2.
Phys Rev Lett ; 131(2): 023001, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505945

RESUMEN

Ionization of matter by energetic radiation generally causes complex secondary reactions that are hard to decipher. Using large helium nanodroplets irradiated by extreme ultraviolet (XUV) photons, we show that the full chain of processes ensuing primary photoionization can be tracked in detail by means of high-resolution electron spectroscopy. We find that elastic and inelastic scattering of photoelectrons efficiently induces interatomic Coulombic decay (ICD) in the droplets. This type of indirect ICD even becomes the dominant process of electron emission in nearly the entire XUV range in large droplets with radius ≳40 nm. Indirect ICD processes induced by electron scattering likely play an important role in other condensed-phase systems exposed to ionizing radiation as well, including biological matter.

3.
Phys Chem Chem Phys ; 24(47): 28844-28852, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36422471

RESUMEN

Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited. In particular, we perform an in-depth study of the relaxation dynamics occurring in the lowest 1s2s and 1s2p droplet bands using high resolution, time-resolved photoelectron spectroscopy. The simplified excitation scheme and improved resolution allow us to identify the relaxation into metastable triplet and excimer states even when exciting below the droplets' autoionization threshold, unobserved in previous studies.

4.
Phys Chem Chem Phys ; 24(5): 2944-2957, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076648

RESUMEN

The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an NVT (moles, volume, and temperature) ensemble. Velocity Verlet algorithms were used for time integration at various internal energies. These simulations validate observed dissociation pathways. From these, we successfully deduce that the internal energy of the doubly charged molecular ion has a significant contribution to the fragmentation mechanism. Notably, a prominent signature of the internal energy was observed in the experimentally determined energies of the neutral fragment in these deferred charge separation pathways, entailing a more detailed theoretical study to uncover the exact dissociation dynamics.

5.
Bone ; 152: 116068, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34166859

RESUMEN

Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.


Asunto(s)
MicroARN Circulante , MicroARNs , Osteoartritis , Osteoporosis , Sarcopenia , Biomarcadores , Humanos , MicroARNs/genética , Osteoartritis/genética , Osteoporosis/genética , Curva ROC , Sarcopenia/genética
6.
Faraday Discuss ; 228(0): 242-265, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33687396

RESUMEN

The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.

7.
Phys Chem Chem Phys ; 22(18): 10149-10157, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32347252

RESUMEN

Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic 1s2s 3,1S He*. This facilitates electron spectroscopy of acetylene aggregates in the sub-Kelvin He environment, providing the following insight into their structure: the molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.

8.
Phys Chem Chem Phys ; 22(16): 8557-8564, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255091

RESUMEN

Alkali metal dimers attached to the surface of helium nanodroplets are found to be efficiently doubly ionized by electron transfer mediated decay (ETMD) when photoionizing the helium droplets. This process is evidenced by detecting in coincidence two energetic ions created by Coulomb explosion and one low-kinetic energy electron. The kinetic energy spectra of ions and electrons are reproduced by simple model calculations based on diatomic potential energy curves, and are in agreement with ab initio calculations for the He-Na2 and He-KRb systems. This work demonstrates that ETMD is an important decay channel in heterogeneous nanosystems exposed to ionizing radiation.

9.
J Phys Chem Lett ; 10(21): 6904-6909, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31625747

RESUMEN

Atoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence. Surprisingly, ab initio calculations show that even for alkali metal atoms floating in dimples at a large distance from the nanodroplet surface, autoionization is largely dominated by charge-exchange ICD. Furthermore, the measured electron spectra manifest the ultrafast internal relaxation of the droplet mainly into the 1s2s1S state and partially into the metastable 1s2s3S state.

10.
Elife ; 82019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31478829

RESUMEN

Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Andrógenos/metabolismo , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN/biosíntesis , Transcripción Genética , Células Cultivadas , Humanos , Masculino , Proteínas de Unión al ARN/genética , Receptores Androgénicos/metabolismo
11.
J Chem Phys ; 150(4): 044304, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709284

RESUMEN

We present a detailed study of inelastic energy-loss collisions of photoelectrons emitted from He nanodroplets by tunable extreme ultraviolet (XUV) radiation. Using coincidence imaging detection of electrons and ions, we probe the lowest He droplet excited states up to the electron impact ionization threshold. We find significant signal contributions from photoelectrons emitted from free He atoms accompanying the He nanodroplet beam. Furthermore, signal contributions from photoionization and electron impact excitation/ionization occurring in pairs of nearest-neighbor atoms in the He droplets are detected. This work highlights the importance of inelastic electron scattering in the interaction of nanoparticles with XUV radiation.

12.
Opt Lett ; 43(23): 5865-5868, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499961

RESUMEN

We demonstrate for the first time, to the best of our knowledge, Raman random lasing in a continuous-wave (CW) excited, completely biocompatible and biodegradable carrot medium naturally composed of fibrous cellulose scattering medium and rich carotene Raman gain medium. The CW-laser-induced photoluminescence threshold and linewidth analysis at the Stokes modes of carotene show a characteristic lasing action with a threshold of 130 W/cm2 and linewidth narrowing with mode Q factor up to 1300. Polarization study of output modes reveals that lasing mode mostly retains the source polarization state. A neat and interesting linear temperature dependence of emission intensity is also discussed. Easy availability, biocompatibility, excitation-dependent emission wavelength selectivity, and temperature sensitivity are hallmarks of this elegant Raman laser medium with strong potential as an optical source for applications in bio-sensing, imaging, and spectroscopy.


Asunto(s)
Materiales Biocompatibles , Rayos Láser , Espectrometría Raman/métodos , Carotenoides , Daucus carota/química , Tecnología Química Verde , Temperatura
13.
Opt Lett ; 42(23): 5002-5005, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216166

RESUMEN

In this Letter, we report on the design, fabrication, and implementation of a novel plasmon-mode-driven low-threshold near-infrared (NIR) random laser (RL) in the 850-900 nm range based on plasmonic ZnS@Au core-shell scatterers. Plasmon modes in the NIR region are used for nanoscale scatterer engineering of ZnS@Au core-shell particles to enhance scattering, as against pristine ZnS. This plasmonic scattering enhancement coupled with femtosecond (fs) laser pumping is shown to cause a three-fold lasing threshold reduction from 325 µJ/cm2 to 100 µJ/cm2 and a mode Q-factor enhancement from 200 to 540 for ZnS@Au-based RL, as compared to pristine ZnS-based RL. Local field enhancement due to plasmonic ZnS@Au scatterers, as evidenced in the finite-difference time-domain simulation, further adds to this enhancement. This work demonstrates a novel scheme of plasmonic mode coupling in the NIR region and fs excitation in a random laser photonic system, overcoming the inherent deficiencies of weak absorption of gain media and poor scattering cross sections of dielectric scatterers for random lasing in the NIR spectrum.

14.
Physiol Mol Biol Plants ; 23(2): 471-475, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28461734

RESUMEN

Somatic embryos were induced from internodal segment derived callus of Oldenlandia umbellata L., in MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). Initially calli were developed from internodes of microshoots inoculated in 2.5 µM NAA supplemented medium. Then calli were transferred to 2,4-D added medium for somatic embryogenesis. Nutritional stress coupled with higher concentration of 2,4-D triggered somatic embryogenesis. Nutritional stress was induced by culturing callus in a fixed amount of medium for a period up to 20 weeks without any external supply of nutrients. Addition of 2.5 µM 2,4-D gave 100% embryogenesis within 16 weeks of incubation. Callus mass bearing somatic embryos were transferred to germination medium facilitated production of in vitro plantlets. MS medium supplemented with 2.5 µM benzyl adenine and 0.5 µM α-naphthalene acetic acid produced 15.33 plants per culture within 4 weeks of culture. Somatic embryo germinated plants were then hardened and transferred to green house.

15.
Rev Sci Instrum ; 88(2): 023301, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28249480

RESUMEN

Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

16.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27258866

RESUMEN

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

17.
Cell Death Differ ; 21(9): 1409-18, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24786831

RESUMEN

Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogenic protein that functions as a coregulator for a number of nuclear receptors. p53 is an important transcription factor and tumor suppressor that has a critical role in DNA damage response (DDR) including cell cycle arrest, repair or apoptosis. In this study, we found an unexpected role for PELP1 in modulating p53-mediated DDR. PELP1 is phosphorylated at Serine1033 by various DDR kinases like ataxia-telangiectasia mutated, ataxia telangiectasia and Rad3-related or DNAPKc and this phosphorylation of PELP1 is important for p53 coactivation functions. PELP1-depleted p53 (wild-type) breast cancer cells were less sensitive to various genotoxic agents including etoposide, camptothecin or γ-radiation. PELP1 interacts with p53, functions as p53-coactivator and is required for optimal activation of p53 target genes under genomic stress. Overall, these studies established a new role of PELP1 in DDRs and these findings will have future implications in our understanding of PELP1's role in cancer progression.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Daño del ADN , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Células MCF-7 , Fosforilación
18.
Phys Chem Chem Phys ; 16(19): 8721-30, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24695536

RESUMEN

In this article we present a perspective on the current state of the art in the photoionization of atomic clusters in few-cycle near-infrared laser pulses. Recently, several studies have reported intriguing phenomena associated with the photoionization of clusters by pulses as short as ~10 fs which approach the natural timescales of collective electronic motion in such nanoscale aggregates. In contrast to the dynamics occurring on few- and sub-picosecond timescales where ionic motion sets in and plays a key role marked by resonant plasmon oscillations, the few-cycle limit precludes cluster expansion due to the nuclear motion of ionic constituents. Thus, pulses lasting just a few optical cycles explore a new "impulsive" regime for the first time in cluster nanoplasmas wherein ions essentially remain "frozen". Along with the perspective on this new regime, we present first measurements of photoelectron distributions and temperatures.

19.
Phys Chem Chem Phys ; 16(18): 8168-77, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24654002

RESUMEN

In bulk materials, defects are usually considered to be unwanted since deviations from perfect lattices may degrade device performance. Interestingly, the presence of defects throws open new possibilities in the case of nanostructures due to the properties related to their limited size scale. Defects and disorders which alter the electronic structure of nanostructures can significantly influence their electronic, magnetic and nonlinear optical properties. Here, we show that defect engineering is an effective strategy for tailoring the nonlinear optical (NLO) properties of carbon and ZnO nanostructures. The effects of surface states, lattice disorders, polycrystalline interfaces and heterogeneous dopants on the nonlinear absorption behaviour of these nanostructures are discussed in detail. Realistic tunable NLO features achieved by controlling such defects enhance the scope of these nanostructures in device applications such as optical limiting, optical switching, pulse shaping, pulse compression and optical diode action.

20.
Nano Lett ; 13(12): 5771-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24224861

RESUMEN

Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.


Asunto(s)
Carbono/química , Grafito/química , Nanotubos de Carbono/química , Óptica y Fotónica , Absorción , Nanoestructuras/química , Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...