Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554393

RESUMEN

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

2.
J Neurochem ; 168(5): 910-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Metabolismo Energético/fisiología , Encéfalo/metabolismo , Humanos , Animales
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256175

RESUMEN

Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Animales , Ratones , Neuropatías Diabéticas/tratamiento farmacológico , NAD , Diabetes Mellitus Experimental/complicaciones , Sirtuina 1 , Ratones Endogámicos C57BL , Nucleótidos , Estreptozocina
4.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747753

RESUMEN

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

5.
Cells ; 12(9)2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174729

RESUMEN

The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.


Asunto(s)
Mitocondrias , NAD , NAD/metabolismo , Mitocondrias/metabolismo , Homeostasis , Orgánulos/metabolismo , Metabolismo Energético
6.
J Pineal Res ; 73(1): e12808, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35619550

RESUMEN

ß-catenin signaling, and angiogenesis are associated with colospheroid (CSC), development. CSCs, spheroids derived from colon cancer cells, are responsible for metastasis, drug resistance, and disease recurrence. Whether dysregulating ß-catenin and inhibiting angiogenesis reduce CSC growth is unknown. In this study, the molecular mechanism of CSC growth inhibition was evaluated using a novel combination of melatonin (MLT) and andrographolide (AGP). These drugs have anticarcinogenic, antioxidant, and antimetastatic properties. CSCs were obtained from two metastatic colon cancer cell lines (HT29 and HCT-15). The viability and stemness were monitored (FDA propidium iodide staining and immunoblot for CD44, CD133, Nanog, Sox2, and Oct4). The drug combination synergistically diminished stemness via increased reactive oxygen species (ROS) levels, reduced mitochondrial membrane potential and ATP level. MLT + AGP induced cell death by inhibiting ß-catenin expression and its downregulatory signals, Cyclin D1, c-Myc. MLT + AGP treated cells exhibited translocation of phospho-ß-catenin to the nucleus and dephosphorylated-ß-catenin. Downregulation of ß-catenin activation and its transcription factors (TCF4 and LEF1) and GTP binding/G-protein related activity were found in the dual therapy. Angiogenic inhibition is consistent with downregulation of VEGF messenger RNA transcripts (VEGF189), phosphorylated VEGF receptor protein expression, matrigel invasion, and capillary tube inhibition. In vivo, the intravenous injection of MLT + AGP slowed HT29 metastatic colon cancer. Histopathology indicated significant reduction in microvascular density and tumor index. Immunohistochemistry for caspase 7, and ß-catenin found increased apoptosis and downregulation of ß-catenin signals. The mechanism(s) of decreased colospheroids growth were the inhibition of the Wnt/ß-catenin pathway. Our results provide a rationale for using MLT in combination with AGP for the inhibition of CRCs.


Asunto(s)
Neoplasias del Colon , Melatonina , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Diterpenos , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Células Madre Neoplásicas/metabolismo , Fenotipo , Vía de Señalización Wnt/genética , beta Catenina/genética
7.
Curr Top Biochem Res ; 23: 1-13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36873619

RESUMEN

Alcohol abuse and dependence in humans causes an extreme shift in metabolism for which the human brain is not evolutionarily prepared. Oxidation of ethanol and acetaldehyde are not regulated, making ethanol a dominating metabolic substrate that prevents the activity of enzymes from oxidizing their usual endogenous substrates. The enzymes required to oxidize ethanol across the variety of affected tissues all produce acetaldehyde which is then converted to acetate by aldehyde dehydrogenases (ALDHs). ALDHs are NAD+-dependent enzymes, and mitochondrial ALDH2 is likely the primary contributor to ethanol-derived acetaldehyde clearance in cells. Metabolism of alcohol has several adverse effects on mitochondria including increased free radical levels, hyperacetylation of mitochondrial proteins, and excessive mitochondrial fragmentation. This review discusses the role of astrocytic and neuronal mitochondria in ethanol metabolism that contributes to the acute and chronic changes in mitochondrial function and morphology, that might promote tolerance, dependence and withdrawal. We also propose potential modes of therapeutic intervention to reduce the toxicity of chronic alcohol consumption.

8.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831252

RESUMEN

Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.


Asunto(s)
Dinámicas Mitocondriales , Degeneración Nerviosa/metabolismo , Acetilación , Animales , Citoesqueleto/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Degeneración Nerviosa/fisiopatología , Procesamiento Proteico-Postraduccional
9.
Cells ; 10(9)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34571997

RESUMEN

Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.


Asunto(s)
Encéfalo/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Glucosa/metabolismo , Sirtuina 3/metabolismo , Acetilación , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Procesamiento Proteico-Postraduccional/fisiología
10.
Brain Sci ; 10(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674501

RESUMEN

It is commonly accepted that mitochondria represent a major source of free radicals following acute brain injury or during the progression of neurodegenerative diseases. The levels of reactive oxygen species (ROS) in cells are determined by two opposing mechanisms-the one that produces free radicals and the cellular antioxidant system that eliminates ROS. Thus, the balance between the rate of ROS production and the efficiency of the cellular detoxification process determines the levels of harmful reactive oxygen species. Consequently, increase in free radical levels can be a result of higher rates of ROS production or due to the inhibition of the enzymes that participate in the antioxidant mechanisms. The enzymes' activity can be modulated by post-translational modifications that are commonly altered under pathologic conditions. In this review we will discuss the mechanisms of mitochondrial free radical production following ischemic insult, mechanisms that protect mitochondria against free radical damage, and the impact of post-ischemic nicotinamide adenine mononucleotide (NAD+) catabolism on mitochondrial protein acetylation that affects ROS generation and mitochondrial dynamics. We propose a mechanism of mitochondrial free radical generation due to a compromised mitochondrial antioxidant system caused by intra-mitochondrial NAD+ depletion. Finally, the interplay between different mechanisms of mitochondrial ROS generation and potential therapeutic approaches are reviewed.

11.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466541

RESUMEN

Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Complicaciones de la Diabetes/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Mononucleótido de Nicotinamida/uso terapéutico , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Disfunción Cognitiva/prevención & control , Complicaciones de la Diabetes/prevención & control , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Inyecciones Intraperitoneales , Masculino , Memoria , NAD/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Mononucleótido de Nicotinamida/administración & dosificación , Mononucleótido de Nicotinamida/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Sirtuina 1/genética , Sirtuina 1/metabolismo , Taurina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Exp Neurol ; 325: 113144, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837320

RESUMEN

Global cerebral ischemia depletes brain tissue NAD+, an essential cofactor for mitochondrial and cellular metabolism, leading to bioenergetics failure and cell death. The post-ischemic NAD+ levels can be replenished by the administration of nicotinamide mononucleotide (NMN), which serves as a precursor for NAD+ synthesis. We have shown that NMN administration shows dramatic protection against ischemic brain damage and inhibits post-ischemic hippocampal mitochondrial fragmentation. To understand the mechanism of NMN-induced modulation of mitochondrial dynamics and neuroprotection we used our transgenic mouse models that express mitochondria targeted yellow fluorescent protein in neurons (mito-eYFP) and mice that carry knockout of mitochondrial NAD+-dependent deacetylase sirt3 gene (SIRT3KO). Following ischemic insult, the mitochondrial NAD+ levels were depleted leading to an increase in mitochondrial protein acetylation, high reactive oxygen species (ROS) production, and excessive mitochondrial fragmentation. Administration of a single dose of NMN normalized hippocampal mitochondria NAD+ pools, protein acetylation, and ROS levels. These changes were dependent on SIRT3 activity, which was confirmed using SIRT3KO mice. Ischemia induced increase in acetylation of the key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) that resulted in inhibition of its activity. This was reversed after NMN treatment followed by reduction of ROS generation and suppression of mitochondrial fragmentation. Specifically, we found that the interaction of mitochondrial fission protein, pDrp1(S616), with neuronal mitochondria was inhibited in NMN treated ischemic mice. Our data thus provide a novel link between mitochondrial NAD+ metabolism, ROS production, and mitochondrial fragmentation. Using NMN to target these mechanisms could represent a new therapeutic approach for treatment of acute brain injury and neurodegenerative diseases.


Asunto(s)
Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Animales , Isquemia Encefálica/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Mononucleótido de Nicotinamida/farmacología
13.
Brain ; 142(12): 3737-3752, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31754701

RESUMEN

In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.


Asunto(s)
Corteza Cerebral/metabolismo , Neuropatías Diabéticas/prevención & control , Neuronas/metabolismo , Sirtuina 1/genética , Animales , Glucemia/metabolismo , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/metabolismo , Dieta Alta en Grasa/efectos adversos , Ganglios Espinales/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Sirtuina 1/metabolismo
14.
J Neurosci Res ; 97(8): 975-990, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30801823

RESUMEN

Nicotinamide adenine dinucleotide (NAD+ ) is a central signaling molecule and enzyme cofactor that is involved in a variety of fundamental biological processes. NAD+ levels decline with age, neurodegenerative conditions, acute brain injury, and in obesity or diabetes. Loss of NAD+ results in impaired mitochondrial and cellular functions. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN), has shown to improve mitochondrial bioenergetics, reverse age-associated physiological decline, and inhibit postischemic NAD+ degradation and cellular death. In this study, we identified a novel link between NAD+ metabolism and mitochondrial dynamics. A single dose (62.5 mg/kg) of NMN, administered to male mice, increases hippocampal mitochondria NAD+ pools for up to 24 hr posttreatment and drives a sirtuin 3 (SIRT3)-mediated global decrease in mitochondrial protein acetylation. This results in a reduction of hippocampal reactive oxygen species levels via SIRT3-driven deacetylation of mitochondrial manganese superoxide dismutase. Consequently, mitochondria in neurons become less fragmented due to lower interaction of phosphorylated fission protein, dynamin-related protein 1 (pDrp1 [S616]), with mitochondria. In conclusion, manipulation of mitochondrial NAD+ levels by NMN results in metabolic changes that protect mitochondria against reactive oxygen species and excessive fragmentation, offering therapeutic approaches for pathophysiologic stress conditions.


Asunto(s)
Hipocampo/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Sirtuina 3/metabolismo , Acetilación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Mononucleótido de Nicotinamida/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo
15.
Neurochem Res ; 44(10): 2280-2287, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30661231

RESUMEN

Dysfunctions in NAD+ metabolism are associated with neurodegenerative diseases, acute brain injury, diabetes, and aging. Loss of NAD+ levels results in impairment of mitochondria function, which leads to failure of essential metabolic processes. Strategies to replenish depleted NAD+ pools can offer significant improvements of pathologic states. NAD+ levels are maintained by two opposing enzymatic reactions, one is the consumption of NAD+ while the other is the re-synthesis of NAD+. Inhibition of NAD+ degrading enzymes, poly-ADP-ribose polymerase 1 (PARP1) and ectoenzyme CD38, following brain ischemic insult can provide neuroprotection. Preservation of NAD+ pools by administration of NAD+ precursors, such as nicotinamide (Nam) or nicotinamide mononucleotide (NMN), also offers neuroprotection. However, NMN treatment demonstrates to be a promising candidate as a therapeutic approach due to its multi-targeted effect acting as PARP1 and CD38 inhibitor, sirtuins activator, mitochondrial fission inhibitor, and NAD+ supplement. Many neurodegenerative diseases or acute brain injury activate several cellular death pathways requiring a treatment strategy that will target these mechanisms. Since NMN demonstrated the ability to exert its effect on several cellular metabolic pathways involved in brain pathophysiology it seems to be one of the most promising candidates to be used for successful neuroprotection.


Asunto(s)
Encéfalo/efectos de los fármacos , Hidrolasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mononucleótido de Nicotinamida/farmacología , Animales , Encéfalo/metabolismo , Humanos , Hidrolasas/metabolismo , Mitocondrias/metabolismo , NAD/efectos de los fármacos , NAD/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología , Mononucleótido de Nicotinamida/metabolismo
16.
J Neurosci Res ; 97(4): 444-455, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30488977

RESUMEN

Global cerebral ischemia that accompanies cardiac arrest is a major cause of morbidity and mortality. Protein Kinase C epsilon (PKCε) is a member of the novel PKC subfamily and plays a vital role in ischemic preconditioning. Pharmacological activation of PKCε before cerebral ischemia confers neuroprotection. The role of endogenous PKCε after cerebral ischemia remains elusive. Here we used male PKCε-null mice to assess the effects of PKCε deficiency on neurodegeneration after transient global cerebral ischemia (tGCI). We found that the cerebral vasculature, blood flow, and the expression of other PKC isozymes were not altered in the PKCε-null mice. Spatial learning and memory was impaired after tGCI, but the impairment was attenuated in male PKCε-null mice as compared to male wild-type controls. A significant reduction in Fluoro-Jade C labeling and mitochondrial release of cytochrome C in the hippocampus was found in male PKCε-null mice after tGCI. Male PKCε-null mice expressed increased levels of PKCδ in the mitochondria, which may prevent the translocation of PKCδ from the cytosol to the mitochondria after tGCI. Our results demonstrate the neuroprotective effects of PKCε deficiency on neurodegeneration after tGCI, and suggest that reduced mitochondrial translocation of PKCδ may contribute to the neuroprotective action in male PKCε-null mice.


Asunto(s)
Hipocampo/metabolismo , Ataque Isquémico Transitorio/metabolismo , Proteína Quinasa C-epsilon/deficiencia , Proteína Quinasa C-epsilon/fisiología , Animales , Encéfalo/patología , Citosol/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Aprendizaje Espacial , Memoria Espacial
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(8): 2060-2067, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261291

RESUMEN

Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl­CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl­CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP­ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl­CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.


Asunto(s)
Acetilcoenzima A/metabolismo , Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Animales , Isquemia Encefálica/patología , Metabolismo Energético , Humanos , Mitocondrias/patología , Dinámicas Mitocondriales , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional
18.
Transl Stroke Res ; 9(3): 223-237, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28936802

RESUMEN

Mitochondria are complex organelles that undergo constant fusion and fission in order to adapt to the ever-changing cellular environment. The fusion/fission proteins, localized in the inner and outer mitochondrial membrane, play critical roles under pathological conditions such as acute brain injury and neurodegenerative diseases. Post-translational modifications of these proteins tightly regulate their function and activity, ultimately impacting mitochondrial dynamics and their efficiency to generate ATP. The individual post-translational modifications that are known to affect mitochondrial dynamics include SUMOylation, ubiquitination, phosphorylation, S-nitrosylation, acetylation, O-linked N-acetyl-glucosamine glycosylation, ADP-ribosylation, and proteolytic cleavage. Under stress or pathologic conditions, several of these modifications are activated leading to a complex regulatory mechanism that shifts the state of the mitochondrial network. The main goal is to accommodate and adapt the cellular bioenergetics metabolism to the energetic demand of the new extra- and/or intracellular environment. Understanding the complex relationship between these modifications on fusion and fission proteins in particular pathologic stress or diseases can provide new promising therapeutic targets and treatment approaches. Here, we discuss the specific post-translational modifications of mitochondrial fusion/fission proteins under pathologic conditions and their impact on mitochondrial dynamics.


Asunto(s)
Isquemia Encefálica/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Humanos
20.
Neurochem Int ; 109: 193-201, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28302504

RESUMEN

NAD+ catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD+ catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9ß) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD+ pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.


Asunto(s)
Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , NAD/metabolismo , Pirofosfatasas/metabolismo , Animales , Humanos , Metabolismo , Hidrolasas Nudix
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...