Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 12(8): 2112-2117, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33625859

RESUMEN

We measured the specific heat Cp of normal (C4H4S) and deuterated (C4D4S) thiophene in the temperature interval of 1 ≤ T, K ≤ 25. C4H4S exhibits a metastable phase II2 and a stable phase V, both with frozen orientational disorder (OD), whereas C4D4S exhibits a metastable phase II2, which is analogous to the OD phase II2 of C4H4S and a fully ordered stable phase V. Our measurements demonstrate the existence of a large bump in the heat capacity of both stable and metastable C4D4S and C4H4S phases at temperatures of ∼10 K, which significantly departs from the expected Debye temperature behavior of Cp ≈ T3. This case study demonstrates that the identified low-temperature Cp anomaly, typically referred to as a "Boson-peak" in the context of glassy crystals, is not exclusive of disordered materials.

2.
Phys Rev Lett ; 119(21): 215506, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29219416

RESUMEN

The low-temperature thermal and transport properties of an unusual kind of crystal exhibiting minimal molecular positional and tilting disorder have been measured. The material, namely, low-dimensional, highly anisotropic pentachloronitrobenzene has a layered structure of rhombohedral parallel planes in which the molecules execute large-amplitude in-plane as well as concurrent out-of-plane librational motions. Our study reveals that low-temperature glassy anomalies can be found in a system with minimal disorder due to the freezing of (mostly in-plane) reorientational jumps of molecules between equivalent crystallographic positions with partial site occupation. Our findings will pave the way to a deeper understanding of the origin of the above-mentioned universal glassy properties at low temperature.

3.
Phys Rev Lett ; 118(10): 105701, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28339247

RESUMEN

We present a dynamic and thermodynamic study of the orientational glass former Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane, CCl_{2}F-CClF_{2}) in order to analyze its kinetic and thermodynamic fragilities. Freon 113 displays internal molecular degrees of freedom that promote a complex energy landscape. Experimental specific heat and its microscopic origin, the vibrational density of states from inelastic neutron scattering, together with the orientational dynamics obtained by means of dielectric spectroscopy have revealed the highest fragility value, both thermodynamic and kinetic, found for this orientational glass former. The excess in both Debye-reduced specific heat and density of states (boson peak) evidences the existence of glassy low-energy excitations. We demonstrate that early proposed correlations between the boson peak and the Debye specific heat value are elusive as revealed by the clear counterexample of the studied case.

4.
J Chem Phys ; 143(8): 084510, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26328859

RESUMEN

The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F-CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl2F-CCl2F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature range.

5.
J Phys Chem B ; 119(26): 8468-74, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26073682

RESUMEN

The heat capacity and thermal conductivity of the monoclinic and the fully ordered orthorhombic phases of 2-adamantanone (C10H14O) have been measured for temperatures between 2 and 150 K. The heat capacities for both phases are shown to be strikingly close regardless of the site disorder present in the monoclinic crystal which arises from the occupancy of three nonequivalent sites for the oxygen atom. The heat capacity curves are also well accounted for by an evaluation carried out within the harmonic approximation in terms of the g(ω) vibrational frequency distributions measured by means of inelastic neutron scattering. Such spectral functions show however a significant excess of low frequency modes for the crystal showing statistical disorder. In contrast, large differences are found for the thermal conductivity which contrary to what could be expected, shows the substitutionally disordered crystal to exhibit better heat transport properties than the fully ordered orthorhombic phase. Such an anomalous behavior is understood from examination of the crystalline structure of the orthorhombic phase which leads to very strong scattering of heat-carrying phonons due to grain boundary effects able to yield a largely reduced value of the conductivity as well as to a plateau-like feature at intermediate temperatures which contrasts with a bell-shaped maximum shown by data pertaining the disordered crystal. The relevance of the present findings within the context of glassy dynamics of the orientational glass state is finally discussed.

6.
Phys Chem Chem Phys ; 7(5): 728-30, 2005 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-19791354

RESUMEN

The thermal conductivity of tetrahydrofuran hydrate has been measured in the temperature region 2-220 K by the steady-state potentiometric method. The temperature dependence of the thermal conductivity exhibits behavior typical of amorphous substances. It is shown that above 100 K the mean free path of the phonons is considerably smaller than the lattice parameter and is no longer dependent on temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA