Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394564

RESUMEN

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

2.
ACS Omega ; 6(34): 21884-21891, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497883

RESUMEN

High-temperature superconductivity appears in cuprate materials that have been tuned in a way where the copper-oxygen bond configuration and coordination is in a state of minimal energy. In competition with the Jahn-Teller effect, which impedes the formation of infinitely connected CuO2 planes, the state of minimal energy persists for planar copper-oxygen bond length variations of up to 10%. We have synthesized the infinite-layer phases of CaCuO2 and SrCuO2 as single-crystalline films using molecular beam epitaxy and performed in-plane scanning transmission electron microscopy mapping. For the infinite-layer phase of CaCuO2 with a short Cu-O bond length, the CuO2 planes maintain their minimal energy by forming distinguished atomic stripes. In contrast, atomic stripe formation does not occur in the infinite-layer phase of SrCuO2, which has a larger Cu-O bond length. The polar field provided by the charge reservoir layer in cuprates with infinitely connected CuO2 planes holds the key over the emergence of superconductivity and is vital to maintain infinitely connected CuO2 planes themselves.

3.
Nat Commun ; 11(1): 4969, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037206

RESUMEN

Magnetic Weyl semimetals have novel transport phenomena related to pairs of Weyl nodes in the band structure. Although the existence of Weyl fermions is expected in various oxides, the evidence of Weyl fermions in oxide materials remains elusive. Here we show direct quantum transport evidence of Weyl fermions in an epitaxial 4d ferromagnetic oxide SrRuO3. We employ machine-learning-assisted molecular beam epitaxy to synthesize SrRuO3 films whose quality is sufficiently high to probe their intrinsic transport properties. Experimental observation of the five transport signatures of Weyl fermions-the linear positive magnetoresistance, chiral-anomaly-induced negative magnetoresistance, π phase shift in a quantum oscillation, light cyclotron mass, and high quantum mobility of about 10,000 cm2V-1s-1-combined with first-principles electronic structure calculations establishes SrRuO3 as a magnetic Weyl semimetal. We also clarify the disorder dependence of the transport of the Weyl fermions, which gives a clear guideline for accessing the topologically nontrivial transport phenomena.

4.
Nat Commun ; 10(1): 535, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755601

RESUMEN

Magnetic insulators have wide-ranging applications, including microwave devices, permanent magnets and future spintronic devices. However, the record Curie temperature (TC), which determines the temperature range in which any ferri/ferromagnetic system remains stable, has stood still for over eight decades. Here we report that a highly B-site ordered cubic double-perovskite insulator, Sr3OsO6, has the highest TC (of ~1060 K) among all insulators and oxides; also, this is the highest magnetic ordering temperature in any compound without 3d transition elements. The cubic B-site ordering is confirmed by atomic-resolution scanning transmission electron microscopy. The electronic structure calculations elucidate a ferromagnetic insulating state with Jeff = 3/2 driven by the large spin-orbit coupling of Os6+ 5d2 orbitals. Moreover, the Sr3OsO6 films are epitaxially grown on SrTiO3 substrates, suggesting that they are compatible with device fabrication processes and thus promising for spintronic applications.

5.
Nature ; 555(7695): 172-173, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517016
6.
Nature ; 555(7695): 172-173, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32095017
7.
Sci Rep ; 3: 2235, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23887134

RESUMEN

In many of today's most interesting materials, strong interactions prevail upon the magnetic moments, the electrons, and the crystal lattice, forming strong links between these different aspects of the system. Particularly, in two-dimensional cuprates, where copper is either five- or six-fold coordinated, superconductivity is commonly induced by chemical doping which is deemed to be mandatory by destruction of long-range antiferromagnetic order of 3d(9) Cu(2+) moments. Here we show that superconductivity can be induced in Pr2CuO4, where copper is four-fold coordinated. We induced this novel quantum state of Pr2CuO4 by realizing pristine square-planar coordinated copper in the copper-oxygen planes, thus, resulting in critical superconducting temperatures even higher than by chemical doping. Our results demonstrate new degrees of freedom, i.e., coordination of copper, for the manipulation of magnetic and superconducting order parameters in quantum materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA