Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(15): 153601, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499900

RESUMEN

Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and nearly dark excited many-body states with inverted atomic populations as the steady states. The multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well as the system's Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated states in a bosonic quantum gas. This implementation offers prospects for potential applications like the realization of quantum optical random walks and microscopy with subwavelength spatial resolution.

2.
Phys Rev Lett ; 128(14): 143602, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476481

RESUMEN

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and simultaneous coherences between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.

3.
Science ; 366(6472): 1496-1499, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31857481

RESUMEN

Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. In this study, we observe a nonstationary state of chiral nature in a synthetic many-body system with independently controllable unitary and dissipative couplings. Our experiment is based on a spinor Bose gas interacting with an optical resonator. Orthogonal quadratures of the resonator field coherently couple the Bose-Einstein condensate to two different atomic spatial modes, whereas the dispersive effect of the resonator losses mediates a dissipative coupling between these modes. In a regime of dominant dissipative coupling, we observe the chiral evolution and relate it to a positional instability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...