Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 8: 198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292783

RESUMEN

The specificity of import of peroxisomal matrix proteins is dependent on the targeting signals encoded within their amino acid sequences. Two known import signals, peroxisomal targeting signal 1 (PTS1), positioned at the C-termini and PTS2 located close to N-termini of these proteins are recognized by the Pex5p and Pex7p receptors, respectively. However, in several yeast species, including Saccharomyces cerevisiae, proteins exist that are efficiently imported into peroxisomes despite having neither PTS1 nor PTS2 and for which no other import signal has been determined. An example of such a protein is S. cerevisiae acyl-CoA oxidase (AOx) encoded by the POX1 gene. While it is known that its import is driven by its interaction with the N-terminal segment of Pex5p, which is separate from its C-terminal PTS1-recognizing tetratricopeptide domain, to date, no AOx polypeptide region has been implicated as critical for this interaction, and thus would constitute the long-sought PTS3 signal. Using random mutagenesis combined with a two-hybrid screen, we identified single amino acid residues within the AOx polypeptide that are crucial for this interaction and for the peroxisomal import of this protein. Interestingly, while scattered throughout the primary sequence, these amino acids come close to each other within two domains of the folded AOx. Although the role of one or both of these regions as the PTS3 signal is not finally proven, our data indicate that the signal guiding AOx into peroxisomal matrix is not a linear sequence but a signal patch.

2.
J Cell Sci ; 131(24)2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30463853

RESUMEN

The protein Swi6 in Saccharomyces cerevisiae is a cofactor in two complexes that regulate the transcription of the genes controlling the G1/S transition. It also ensures proper oxidative and cell wall stress responses. Previously, we found that Swi6 was crucial for the survival of genotoxic stress. Here, we show that a lack of Swi6 causes replication stress leading to double-strand break (DSB) formation, inefficient DNA repair and DNA content alterations, resulting in high cell mortality. Comparative genome hybridization experiments revealed that there was a random genome rearrangement in swi6Δ cells, whereas in diploid swi6Δ/swi6Δ cells, chromosome V is duplicated. SWI4 and PAB1, which are located on chromosome V and are known multicopy suppressors of swi6Δ phenotypes, partially reverse swi6Δ genome instability when overexpressed. Another gene on chromosome V, RAD51, also supports swi6Δ survival, but at a high cost; Rad51-dependent illegitimate recombination in swi6Δ cells appears to connect DSBs, leading to genome rearrangement and preventing cell death.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Reparación del ADN/genética , Inestabilidad Genómica/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Genética/genética , Saccharomyces cerevisiae/metabolismo
3.
J Mol Microbiol Biotechnol ; 27(2): 81-90, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28231564

RESUMEN

2-Phenylethanol (2-PE) is an aromatic alcohol with a rosy scent which is widely used in the food, fragrance, and cosmetic industries. Promising sources of natural 2-PE are microorganisms, especially yeasts, which can produce 2-PE by biosynthesis and biotransformation. Thus, the first challenging goal in the development of biotechnological production of 2-PE is searching for highly productive yeast strains. In the present work, 5 laboratory Saccharomyces cerevisiae strains were tested for the production of 2-PE. Thereafter, 2 of them were hybridized by a mating procedure and, as a result, a new diploid, S. cerevisiae AM1-d, was selected. Within the 72-h batch culture in a medium containing 5 g/L of L-phenylalanine, AM1-d produced 3.83 g/L of 2-PE in a shaking flask. In this way, we managed to select the diploid S. cerevisiae AM1-d strain, showing a 3- and 5-fold increase in 2-PE production in comparison to parental strains. Remarkably, the enhanced production of 2-PE by the hybrid of 2 yeast laboratory strains is demonstrated here for the first time.


Asunto(s)
Microbiología Industrial/métodos , Fenilalanina/metabolismo , Alcohol Feniletílico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultivo Celular por Lotes , Biotransformación , Medios de Cultivo/química , Diploidia , Fermentación , Células Híbridas/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
4.
Oncotarget ; 8(15): 24988-25004, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28212567

RESUMEN

Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a "DNA cloud assay". We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).


Asunto(s)
Cromatina/metabolismo , ADN Ribosómico/genética , Cromatina/química , ADN Ribosómico/química , Humanos , Espectrometría de Masas/métodos , Sefarosa
5.
PLoS One ; 10(3): e0120702, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756177

RESUMEN

The ability to survive stressful conditions is important for every living cell. Certain stresses not only affect the current well-being of cells but may also have far-reaching consequences. Uncurbed oxidative stress can cause DNA damage and decrease cell survival and/or increase mutation rates, and certain substances that generate oxidative damage in the cell mainly act on DNA. Radiomimetic zeocin causes oxidative damage in DNA, predominantly by inducing single- or double-strand breaks. Such lesions can lead to chromosomal rearrangements, especially in diploid cells, in which the two sets of chromosomes facilitate excessive and deleterious recombination. In a global screen for zeocin-oversensitive mutants, we selected 133 genes whose deletion reduces the survival of zeocin-treated diploid Saccharomyces cerevisiae cells. The screen revealed numerous genes associated with stress responses, DNA repair genes, cell cycle progression genes, and chromatin remodeling genes. Notably, the screen also demonstrated the involvement of the vesicular trafficking system in cellular protection against DNA damage. The analyses indicated the importance of vesicular system integrity in various pathways of cellular protection from zeocin-dependent damage, including detoxification and a direct or transitional role in genome maintenance processes that remains unclear. The data showed that deleting genes involved in vesicular trafficking may lead to Rad52 focus accumulation and changes in total DNA content or even cell ploidy alterations, and such deletions may preclude proper DNA repair after zeocin treatment. We postulate that functional vesicular transport is crucial for sustaining an integral genome. We believe that the identification of numerous new genes implicated in genome restoration after genotoxic oxidative stress combined with the detected link between vesicular trafficking and genome integrity will reveal novel molecular processes involved in genome stability in diploid cells.


Asunto(s)
Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Reparación del ADN , ADN de Hongos/genética , Diploidia , Eliminación de Gen , Genoma Fúngico , Genómica , Humanos , Recombinación Genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA