Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Gastro Hep Adv ; 2(5): 666-675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469521

RESUMEN

Background and Aims: Necrotizing enterocolitis (NEC) is a life-threatening disease and the most common gastrointestinal emergency in premature infants. Accurate early diagnosis is challenging. Modified Bell's staging is routinely used to guide diagnosis, but early diagnostic signs are nonspecific, potentially leading to unobserved disease progression, which is problematic given the often rapid deterioration observed. We investigated fecal cytokine levels, coupled with gut microbiota profiles, as a noninvasive method to discover specific NEC-associated signatures that can be applied as potential diagnostic markers. Methods: Premature babies born below 32 weeks of gestation were admitted to the 2-site neonatal intensive care unit (NICU) of Imperial College hospitals (St. Mary's or Queen Charlotte's & Chelsea) between January 2011 and December 2012. During the NICU stay, expert neonatologists grouped individuals by modified Bell's staging (healthy, NEC1, NEC2/3) and fecal samples from diapers were collected consecutively. Microbiota profiles were assessed by 16S rRNA gene amplicon sequencing and cytokine concentrations were measured by V-Plex multiplex assays. Results: Early evaluation of microbiota profiles revealed only minor differences. However, at later time points, significant changes in microbiota composition were observed for Bacillota (adj. P = .0396), with Enterococcus being the least abundant in Bell stage 2/3 NEC. Evaluation of fecal cytokine levels revealed significantly higher concentrations of IL-1α (P = .045), IL-5 (P = .0074), and IL-10 (P = .032) in Bell stage 1 NEC compared to healthy individuals. Conclusion: Differences in certain fecal cytokine profiles in patients with NEC indicate their potential use as diagnostic biomarkers to facilitate earlier diagnosis. Additionally, associations between microbial and cytokine profiles contribute to improving knowledge about NEC pathogenesis.

2.
Nat Microbiol ; 8(6): 1160-1175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231089

RESUMEN

Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies.


Asunto(s)
Clostridium perfringens , Enfermedades del Recién Nacido , Lactante , Recién Nacido , Humanos , Animales , Ratones , Clostridium perfringens/genética , Recien Nacido Prematuro , Estudios Retrospectivos , Virulencia/genética , Genómica
3.
BMC Pediatr ; 22(1): 166, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361147

RESUMEN

BACKGROUND: Respiratory virus infection is common in early childhood, and children may be symptomatic or symptom-free. Little is known regarding the association between symptomatic/asymptomatic infection and particular clinical factors such as breastfeeding as well as the consequences of such infection. METHOD: We followed an unselected cohort of term neonates to two years of age (220 infants at recruitment, 159 who remained in the study to 24 months), taking oral swabs at birth and oropharyngeal swabs at intervals subsequently (at 1.5, 6, 9, 12, 18 and 24 months and in a subset at 3 and 4.5 months) while recording extensive metadata including the presence of respiratory symptoms and breastfeeding status. After 2 years medical notes from the general practitioner were inspected to ascertain whether doctor-diagnosed wheeze had occurred by this timepoint. Multiplex PCR was used to detect a range of respiratory viruses: influenza (A&B), parainfluenza (1-4), bocavirus, human metapneumovirus, rhinovirus, coronavirus (OC43, 229E, NL63, HKU1), adenovirus, respiratory syncytial virus (RSV), and polyomavirus (KI, WU). Logistic regression and generalised estimating equations were used to identify associations between clinical factors and virus detection. RESULTS: Overall respiratory viral incidence increased with age. Rhinovirus was the virus most frequently detected. The detection of a respiratory virus was positively associated with respiratory symptoms, male sex, season, childcare and living with another child. We did not observe breastfeeding (whether assessed as the number of completed months of breastfeeding or current feed status) to be associated with the detection of a respiratory virus. There was no association between early viral infection and doctor-diagnosed wheeze by age 2 years. CONCLUSION: Asymptomatic and symptomatic viral infection is common in the first 2 years of life with rhinovirus infection being the most common. Whilst there was no association between early respiratory viral infection and doctor-diagnosed wheeze, we have not ruled out an association of early viral infections with later asthma, and long-term follow-up of the cohort continues.


Asunto(s)
Coronavirus , Infecciones del Sistema Respiratorio , Virosis , Niño , Preescolar , Estudios de Cohortes , Humanos , Lactante , Recién Nacido , Estilo de Vida , Masculino , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Virosis/diagnóstico
4.
BMC Microbiol ; 21(1): 225, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362295

RESUMEN

BACKGROUND: Necrotising enterocolitis (NEC) is a devastating bowel disease, primarily affecting premature infants, with a poorly understood aetiology. Prior studies have found associations in different cases with an overabundance of particular elements of the faecal microbiota (in particular Enterobacteriaceae or Clostridium perfringens), but there has been no explanation for the different results found in different cohorts. Immunological studies have indicated that stimulation of the TLR4 receptor is involved in development of NEC, with TLR4 signalling being antagonised by the activated TLR9 receptor. We speculated that differential stimulation of these two components of the signalling pathway by different microbiota might explain the dichotomous findings of microbiota-centered NEC studies. Here we used shotgun metagenomic sequencing and qPCR to characterise the faecal microbiota community of infants prior to NEC onset and in a set of matched controls. Bayesian regression was used to segregate cases from control samples using both microbial and clinical data. RESULTS: We found that the infants suffering from NEC fell into two groups based on their microbiota; one with low levels of CpG DNA in bacterial genomes and the other with high abundances of organisms expressing LPS. The identification of these characteristic communities was reproduced using an external metagenomic validation dataset. We propose that these two patterns represent the stimulation of a common pathway at extremes; the LPS-enriched microbiome suggesting overstimulation of TLR4, whilst a microbial community with low levels of CpG DNA suggests reduction of the counterbalance to TLR4 overstimulation. CONCLUSIONS: The identified microbial community patterns support the concept of NEC resulting from TLR-mediated pathways. Identification of these signals suggests characteristics of the gastrointestinal microbial community to be avoided to prevent NEC. Potential pre- or pro-biotic treatments may be designed to optimise TLR signalling.


Asunto(s)
Enterocolitis Necrotizante/microbiología , Células Epiteliales/inmunología , Microbioma Gastrointestinal/genética , Enfermedades del Prematuro/microbiología , Receptor Toll-Like 4/inmunología , Teorema de Bayes , ADN Bacteriano/genética , Enterocolitis Necrotizante/inmunología , Células Epiteliales/microbiología , Heces/microbiología , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/inmunología , Metagenómica , ARN Ribosómico 16S/genética , Receptor Toll-Like 4/genética
5.
Cell Rep Med ; 1(5): 100077, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32904427

RESUMEN

Supplementation with members of the early-life microbiota as "probiotics" is increasingly used in attempts to beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method. 16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and gastrointestinal environment more closely resembling that of full-term infants.


Asunto(s)
Bifidobacterium/fisiología , Microbioma Gastrointestinal/fisiología , Recien Nacido Prematuro/metabolismo , Recien Nacido Prematuro/fisiología , Lactobacillus/fisiología , Metaboloma/fisiología , Bifidobacterium/genética , Lactancia Materna/métodos , Suplementos Dietéticos/microbiología , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Lactante , Recién Nacido , Lactobacillus/genética , Estudios Longitudinales , Leche Humana/microbiología , Probióticos/administración & dosificación , ARN Ribosómico 16S/genética
6.
BMC Pediatr ; 20(1): 75, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070310

RESUMEN

BACKGROUND: Clostridium perfringens forms part of the human gut microbiota and has been associated with life-threatening necrotising enterocolitis (NEC) in premature infants. Whether specific toxigenic strains are responsible is unknown, as is the extent of diversity of strains in healthy premature babies. We investigated the C. perfringens carrier status of premature infants in the neonatal intensive care unit, factors influence this status, and the toxic potential of the strains. METHODS: C. perfringens was isolated by culture from faecal samples from 333 infants and their toxin gene profiles analysed by PCR. A survival analysis was used to identify factors affecting probability of carriage. Competitive growth experiments were used to explore the results of the survival analysis. RESULTS: 29.4% of infants were colonized with C. perfringens before they left hospital. Three factors were inversely associated with probability of carriage: increased duration of maternal milk feeds, CPAP oxygen treatment and antibiotic treatment. C. perfringens grew poorly in breast milk and was significantly outperformed by Bifidobacterium infantis, whether grown together or separately. Toxin gene screening revealed that infants carried isolates positive for collagenase, perfringolysin O, beta 2, beta, becA/B, netB and enterotoxin toxin genes, yet none were observed to be associated with the development of NEC. CONCLUSIONS: Approximately a third of preterm infants are colonised 3 weeks after birth with toxin gene-carrying C. perfringens. We speculate that increased maternal breast milk, oxygen and antibiotic treatment creates an environment in the gut hostile to growth of C. perfringens. Whilst potentially toxigenic C. perfringens isolates were frequent, no toxin type was associated with NEC. TRIAL REGISTRATION: clinicaltrials.gov NCT01102738, registered 13th April 2010.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Microbioma Gastrointestinal , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/microbiología , Clostridium perfringens/patogenicidad , Enterotoxinas , Heces , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Masculino , Embarazo
7.
J Matern Fetal Neonatal Med ; 33(3): 398-403, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29945481

RESUMEN

Background and aims: The etiology of necrotizing enterocolitis (NEC) is unclear and postulated as being multifactorial. It has been suggested that one causative factor is the transfusion of packed red blood cells (PRBCs) leading to the disease entity commonly referred to as transfusion-associated NEC (TANEC). TANEC has been reported in North America but its incidence has not been formally investigated in the UK. Our aims were to identify the incidence of NEC and TANEC in tertiary-level UK neonatal units and to describe characteristics of TANEC cases.Materials and methods: Using strict case definitions for NEC and TANEC, we undertook a retrospective review to estimate the incidence of TANEC cases occurring in four UK tertiary-level centers during a 38-month period.Results: Of 8007 consecutive neonatal admissions of all gestations to the four centers, 68 babies went on to develop NEC and all affected infants were of very low birth weight (VLBW); 34 of these had previously received a transfusion of PRBCs but did not fit the diagnostic criteria for TANEC, whereas 15 (22%) of the 68 babies with NEC qualified as TANEC cases. UK cases occurred at an earlier postnatal age than cases reported in multiple large North American series and were of a lower birth weight.Conclusions: We have confirmed the presence of TANEC in the UK VLBW neonatal population. Its incidence lies within the wide range described in previous reports of this phenomenon globally, though with some local variation in characteristics. Further work is needed to clarify causation, pathophysiology, and possible mechanisms of prevention of TANEC.


Asunto(s)
Enterocolitis Necrotizante/etiología , Reacción a la Transfusión/complicaciones , Femenino , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Estudios Retrospectivos
8.
Toxins (Basel) ; 11(9)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546794

RESUMEN

Clostridium perfringens toxinotype D, toxinotype E, and gastroenteritis-linked BEC/CPILE-positive strains have never been reported in healthy children. We isolated, whole-genome sequenced and bioinformatically characterised three C. perfringens isolates-type D (IQ1), type E (IQ2) and BEC/CPILE-positive (IQ3), recovered from the stools of three healthy two-year-olds, which were further compared to 128 C. perfringens genomes available from NCBI. The analysis uncovered a previously under-described putative toxin gene alv (alveolysin) encoded by isolates IQ2 and IQ3, which appeared to be a clade-specific trait associated with strains from domestic animals. A plasmid analysis indicated that the iota-toxin was encoded on a near-intact previously described plasmid pCPPB-1 in type E strain IQ2. The BEC genes becA and becB were carried on a near-identical pCPOS-1 plasmid previously associated with Japanese gastroenteritis outbreaks. Furthermore, a close phylogenetic relatedness was inferred between the French C. perfringens type E isolates cp515.17 and newly sequenced IQ2, suggesting geographical links. This study describes novel C. perfringens isolates from healthy individuals which encode important toxin genes, indicating the potential spread of these veterinary and clinically important strains and mobile genetic elements, and highlights areas for future research.


Asunto(s)
Clostridium perfringens/genética , Heces/microbiología , Toxinas Bacterianas/genética , Secuencia de Bases , Preescolar , Infecciones por Clostridium/microbiología , Clostridium perfringens/aislamiento & purificación , Genómica , Humanos , Filogenia , Polimorfismo de Nucleótido Simple
9.
EBioMedicine ; 46: 486-498, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31353293

RESUMEN

BACKGROUND: A critical window in infancy has been proposed, during which the microbiota may affect subsequent health. The longitudinal development of the oropharyngeal microbiota is under-studied and may be associated with early-life wheeze. We aimed to investigate the temporal association of the development of the oropharyngeal microbiota with early-life wheeze. METHODS: A population-based birth cohort based in London, UK was followed for 24 months. We collected oropharyngeal swabs at six time-points. Microbiota was determined using sequencing of the V3-V5 region of the 16S rRNA-encoding gene. Medical records were reviewed for the outcome of doctor diagnosed wheeze. We used a time-varying model to investigate the temporal association between the development of microbiota and doctor-diagnosed wheeze. FINDINGS: 159 participants completed the study to 24 months and for 98 there was complete sequencing data at all timepoints and outcome data. Of these, 26 had doctor-diagnosed wheeze. We observed significant increase in the abundance of Neisseria between 9 and 24 months in children who developed wheeze (p = 0∙003), while in those without wheezing there was a significant increment in the abundance of Granulicatella (p = 0∙012) between 9 and 12 months, and of Prevotella (p = 0∙018) after 18 months. INTERPRETATION: A temporal association between the respiratory commensal Granulicatella and also Prevotella with wheeze (negative), and between Neisseria and wheeze (positive) was identified in infants prior to one year of age. This adds to evidence for the proposed role of the microbiota in the development of wheeze. FUND: Research funding from the Winnicott Foundation, Meningitis Now and Micropathology Ltd.


Asunto(s)
Microbiota , Orofaringe/microbiología , Ruidos Respiratorios/etiología , Factores de Edad , Biodiversidad , Estudios de Cohortes , Femenino , Humanos , Masculino , Metagenoma , Metagenómica/métodos , Vigilancia de la Población , Reino Unido/epidemiología
10.
Microbiome ; 7(1): 40, 2019 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-30878035

RESUMEN

BACKGROUND: The growth in publically available microbiome data in recent years has yielded an invaluable resource for genomic research, allowing for the design of new studies, augmentation of novel datasets and reanalysis of published works. This vast amount of microbiome data, as well as the widespread proliferation of microbiome research and the looming era of clinical metagenomics, means there is an urgent need to develop analytics that can process huge amounts of data in a short amount of time. To address this need, we propose a new method for tyrhe compact representation of microbiome sequencing data using similarity-preserving sketches of streaming k-mer spectra. These sketches allow for dissimilarity estimation, rapid microbiome catalogue searching and classification of microbiome samples in near real time. RESULTS: We apply streaming histogram sketching to microbiome samples as a form of dimensionality reduction, creating a compressed 'histosketch' that can efficiently represent microbiome k-mer spectra. Using public microbiome datasets, we show that histosketches can be clustered by sample type using the pairwise Jaccard similarity estimation, consequently allowing for rapid microbiome similarity searches via a locality sensitive hashing indexing scheme. Furthermore, we use a 'real life' example to show that histosketches can train machine learning classifiers to accurately label microbiome samples. Specifically, using a collection of 108 novel microbiome samples from a cohort of premature neonates, we trained and tested a random forest classifier that could accurately predict whether the neonate had received antibiotic treatment (97% accuracy, 96% precision) and could subsequently be used to classify microbiome data streams in less than 3 s. CONCLUSIONS: Our method offers a new approach to rapidly process microbiome data streams, allowing samples to be rapidly clustered, indexed and classified. We also provide our implementation, Histosketching Using Little K-mers (HULK), which can histosketch a typical 2 GB microbiome in 50 s on a standard laptop using four cores, with the sketch occupying 3000 bytes of disk space. ( https://github.com/will-rowe/hulk ).


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Metagenómica/métodos , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Estudios de Cohortes , Humanos , Recién Nacido , Recien Nacido Prematuro , Aprendizaje Automático , Análisis de Secuencia de ADN , Programas Informáticos
11.
Front Immunol ; 9: 1621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30061891

RESUMEN

The threat from invasive meningococcal disease (IMD) remains a serious source of concern despite the licensure and availability of vaccines. A limitation of current serogroup B vaccines is the breadth of coverage afforded, resulting from the capacity for extensive variation of the meningococcus and its huge potential for the generation of further diversity. Thus, the continuous search for candidate antigens that will compose supplementary or replacement vaccines is mandated. Here, we describe successful efforts to utilize the reverse vaccinology 2.0 approach to identify novel functional meningococcal antigens. In this study, eight broadly cross-reactive sequence-specific antimeningococcal human monoclonal antibodies (hmAbs) were cloned from 4 ml of blood taken from a 7-month-old sufferer of IMD. Three of these hmAbs possessed human complement-dependent bactericidal activity against meningococcal serogroup B strains of disparate PorA and 4CMenB antigen sequence types, strongly suggesting that the target(s) of these bactericidal hmAbs are not PorA (the immunodominant meningococcal antigen), factor-H binding protein, or other components of current meningococcal vaccines. Reactivity of the bactericidal hmAbs was confirmed to a single ca. 35 kDa protein in western blots. Unequivocal identification of this antigen is currently ongoing. Collectively, our results provide proof-of-principle for the use of reverse vaccinology 2.0 as a powerful tool in the search for alternative meningococcal vaccine candidate antigens.

12.
Emerg Infect Dis ; 24(3): 443-452, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29460728

RESUMEN

Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.


Asunto(s)
Cápsulas Bacterianas , Técnicas de Tipificación Bacteriana , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Cápsulas Bacterianas/genética , Evolución Molecular , Ligamiento Genético , Haemophilus influenzae/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
J Allergy Clin Immunol ; 141(4): 1334-1342.e5, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28866384

RESUMEN

BACKGROUND: Development of the gut microbiota in infancy is important in maturation of the immune system. Deviations in colonization patterns have been associated with allergic manifestations such as eczema, but exact microbiome dysfunctions underlying allergies remain unclear. We studied the gut microbiota of 138 infants at increased risk of allergy, participating in a clinical trial investigating the effectiveness of a partially hydrolyzed protein formula supplemented with nondigestible oligosaccharides on the prevention of eczema. OBJECTIVE: The effects of interventions and breast-feeding on fecal microbiota were investigated. Additionally, we aimed to identify microbial patterns associated with the onset of eczema. METHODS: Bacterial taxonomic compositions in the first 26 weeks of life were analyzed by using 16S rRNA gene sequencing. Additionally, fecal pH and microbial metabolite levels were measured. RESULTS: Fecal microbial composition, metabolites, and pH of infants receiving partially hydrolyzed protein formula supplemented with nondigestible oligosaccharides was closer to that of breast-fed infants than that of infants receiving standard cow's milk formula. Infants with eczema by 18 months showed discordant development of bacterial genera of Enterobacteriaceae and Parabacteroides species in the first 26 weeks, as well as decreased acquisition of lactate-utilizing bacteria producing butyrate, namely Eubacterium and Anaerostipes species, supported by increased lactate and decreased butyrate levels. CONCLUSIONS: We showed that a partially hydrolyzed protein infant formula with specific prebiotics modulated the gut microbiota closer to that of breast-fed infants. Additionally, we identified a potential link between microbial activity and onset of eczema, which might reflect a suboptimal implementation of gut microbiota at specific developmental stages in infants at high risk for allergy.


Asunto(s)
Lactancia Materna , Eccema/prevención & control , Microbioma Gastrointestinal , Fórmulas Infantiles/química , Prebióticos , Método Doble Ciego , Eccema/microbiología , Heces/microbiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Resultado del Tratamiento
14.
Infect Immun ; 85(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28264906

RESUMEN

Neisseria meningitidis is a commensal microbe that colonizes the human nasopharynx but occasionally invades the bloodstream to cause life-threatening infection. N. meningitidis MC58 NMB0419 encodes a Sel1-like repeat (SLR)-containing protein, previously implicated in invasion of epithelial cells. A gene-regulatory function was revealed in Escherichia coli expressing plasmid-borne NMB0419 and showing significantly increased epithelial adherence compared to the wild type, due to increased expression of mannose-sensitive type 1 pili. While a meningococcal NMB0419 mutant did not have altered epithelial adherence, in a transcriptome-wide comparison of the wild type and an NMB0419 mutant, a large proportion of genes differentially regulated in the mutant were involved in iron acquisition and metabolism. Fifty-one percent and 38% of genes, respectively, up- and downregulated in the NMB0419 mutant had previously been identified as being induced and repressed by meningococcal Fur. An in vitro growth defect of the NMB0419 mutant under iron restriction was consistent with the downregulation of tbpAB and hmbR, while an intraepithelial replication defect was consistent with the downregulation of tonB, exbB, and exbD, based on a known phenotype of a meningococcal tonB mutant. Disruption of the N-terminal NMB0419 signal peptide, predicted to export the protein beyond the cytoplasmic membrane, resulted in loss of functional traits in N. meningitidis and E. coli Our study indicates that the expression of NMB0419 is associated with transcriptional changes counterbalancing the regulatory function of Fur, offering a new perspective on regulatory mechanisms involved in meningococcal interaction with epithelial cells, and suggests new insights into the roles of SLR-containing genes in other bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/genética , Regulón , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Adhesión Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Hierro/metabolismo , Plásmidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética
15.
Microbiome ; 5(1): 31, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28274256

RESUMEN

BACKGROUND: Necrotizing enterocolitis (NEC) is a catastrophic disease of preterm infants, and microbial dysbiosis has been implicated in its pathogenesis. Studies evaluating the microbiome in NEC and preterm infants lack power and have reported inconsistent results. METHODS AND RESULTS: Our objectives were to perform a systematic review and meta-analyses of stool microbiome profiles in preterm infants to discern and describe microbial dysbiosis prior to the onset of NEC and to explore heterogeneity among studies. We searched MEDLINE, PubMed, CINAHL, and conference abstracts from the proceedings of Pediatric Academic Societies and reference lists of relevant identified articles in April 2016. Studies comparing the intestinal microbiome in preterm infants who developed NEC to those of controls, using culture-independent molecular techniques and reported α and ß-diversity metrics, and microbial profiles were included. In addition, 16S ribosomal ribonucleic acid (rRNA) sequence data with clinical meta-data were requested from the authors of included studies or searched in public data repositories. We reprocessed the 16S rRNA sequence data through a uniform analysis pipeline, which were then synthesized by meta-analysis. We included 14 studies in this review, and data from eight studies were available for quantitative synthesis (106 NEC cases, 278 controls, 2944 samples). The age of NEC onset was at a mean ± SD of 30.1 ± 2.4 weeks post-conception (n = 61). Fecal microbiome from preterm infants with NEC had increased relative abundances of Proteobacteria and decreased relative abundances of Firmicutes and Bacteroidetes prior to NEC onset. Alpha- or beta-diversity indices in preterm infants with NEC were not consistently different from controls, but we found differences in taxonomic profiles related to antibiotic exposure, formula feeding, and mode of delivery. Exploring heterogeneity revealed differences in microbial profiles by study and the target region of the 16S rRNA gene (V1-V3 or V3-V5). CONCLUSIONS: Microbial dysbiosis preceding NEC in preterm infants is characterized by increased relative abundances of Proteobacteria and decreased relative abundances of Firmicutes and Bacteroidetes. Microbiome optimization may provide a novel strategy for preventing NEC.


Asunto(s)
Disbiosis , Enterocolitis Necrotizante/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Intestinos/fisiopatología , Bacterias/aislamiento & purificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro , Intestinos/microbiología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S
16.
J Pediatr Gastroenterol Nutr ; 64(2): 230-237, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27070657

RESUMEN

OBJECTIVES: Inflammatory bowel disease states are associated with gastrointestinal dysbiosis. Mucosal biopsy sampling, retrieving the bacterial community that most directly interacts with the host, is an invasive procedure that, we hypothesis, may be sufficiently approximated by other sampling methods. We investigate the relatedness of samples obtained by different methods and the effects of bowel preparation on the gastrointestinal community in a paediatric population. METHODS: We recruited a cohort of patients undergoing colonoscopy, collecting serial samples via differing methods (rectal swabs, biopsies, and faecal matter/luminal contents) prebowel preparation, during colonoscopy and after colonoscopy. Next-generation sequencing was used to determine the structure of the microbial community. RESULTS: The microbial community in luminal contents collected during colonoscopy was found to be more similar to that of mucosal biopsies than rectal swabs. Community traits of the mucosal biopsies could be used to segregate patients with inflammatory bowel disease from other patients, and the similarity of the communities in the luminal contents was sufficient for the segregation to be reproduced. Microbial communities sampled by rectal swabs and prebowel preparation faeces were less similar to mucosal biopsies. Bowel preparation was found to have no significant long-term effects on the microbial community, despite the transient effects evident during colonoscopy. CONCLUSIONS: A clinically relevant description of the mucosal microbial community can be obtained via the noninvasive collection of luminal contents after bowel cleansing. Bowel preparation in a paediatric population results in no consistent sustained alterations to the gastrointestinal microbiota.


Asunto(s)
Catárticos/farmacología , Colon/microbiología , Colonoscopía , Heces/microbiología , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Laxativos/farmacología , Adolescente , Biopsia , Catárticos/administración & dosificación , Niño , Preescolar , Colon/diagnóstico por imagen , Colon/efectos de los fármacos , Colon/patología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Laxativos/administración & dosificación , Masculino
17.
PLoS One ; 11(8): e0161784, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27552216

RESUMEN

Carboxyhemoglobin levels in blood reflect endogenous carbon monoxide production and are often measured during routine blood gas analysis. Endogenous carbon monoxide production has been reported to be increased during sepsis, but carboxyhemoglobin levels have not been thoroughly evaluated as a biomarker of sepsis. We sought to determine whether carboxyhemoglobin levels were elevated during sepsis in a high risk population of premature neonates. We conducted a retrospective cohort study of 30 infants in two neonatal intensive care units using electronic medical and laboratory records. The majority of infants were extremely premature and extremely low birth weight, and 25 had at least one episode of sepsis. We collected all carboxyhemoglobin measurements during their in-patient stay and examined the relationship between carboxyhemoglobin and a variety of clinical and laboratory parameters, in addition to the presence or absence of sepsis, using linear mixed-effect models. We found that postnatal age had the most significant effect on carboxyhemoglobin levels, and other significant associations were identified with gestational age, hemoglobin concentration, oxyhemoglobin saturation, and blood pH. Accounting for these covariates, there was no significant relationship between the onset of sepsis and carboxyhemoglobin levels. Our results show that carboxyhemoglobin is unlikely to be a clinically useful biomarker of sepsis in premature infants, and raise a note of caution about factors which may confound the use of carbon monoxide as a clinical biomarker for other disease processes such as hemolysis.


Asunto(s)
Carboxihemoglobina , Recien Nacido Prematuro , Sepsis/sangre , Sepsis/etiología , Análisis de los Gases de la Sangre , Femenino , Humanos , Lactante , Recién Nacido , Londres/epidemiología , Masculino , Estudios Retrospectivos , Sepsis/epidemiología
18.
Microbiome ; 4(1): 40, 2016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-27473284

RESUMEN

BACKGROUND: In this manuscript, we investigate the "stones best left unturned" of sample storage and preparation and their implications for the next-generation sequencing of infant faecal microbial communities by the 16S ribosomal ribonucleic acid (rRNA) gene. We present a number of experiments that investigate the potential effects of often overlooked methodology factors, establishing a "normal" degree of variation expected between replica sequenced samples. Sources of excess variation are then identified, as measured by observation of alpha diversity, taxonomic group counts and beta diversity magnitudes between microbial communities. RESULTS: Extraction of DNA from samples on different dates, by different people and even using varied sample weights results in little significant difference in downstream sequencing data. A key assumption in many studies is the stability of samples stored long term at -80 °C prior to extraction. After 2 years, we see relatively few changes: increased abundances of lactobacilli and bacilli and a reduction in the overall OTU count. Where samples cannot be frozen, we find that storing samples at room temperature does lead to significant changes in the microbial community after 2 days. Mailing of samples during this time period (a common form of sample collection from outpatients for example) does not lead to any additional variation. CONCLUSIONS: Important methodological standards can be drawn from these results; painstakingly created archives of infant faecal samples stored at -80 °C are still largely representative of the original community and varying factors in DNA extraction methodology have comparatively little effect on overall results. Samples taken should ideally be either frozen at -80 °C or extracted within 2 days if stored at room temperature, with mail samples being mailed on the day of collection.


Asunto(s)
Criopreservación/métodos , ADN Bacteriano/genética , Microbiota/genética , Manejo de Especímenes/métodos , Bacterias/clasificación , Bacterias/genética , Heces/microbiología , Congelación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , ARN Ribosómico 16S/genética
20.
J Bacteriol ; 197(24): 3834-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26459556

RESUMEN

UNLABELLED: Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. IMPORTANCE: By protecting microbes against reactive oxygen insults, SODs aid survival of many bacteria within their hosts. Despite the ubiquity and conservation of these key enzymes, notable species-specific differences relevant to pathogenesis remain undefined. To probe mechanisms that govern the functioning of Neisseria meningitidis and Brucella abortus SODs, we used X-ray structures, enzymology, modeling, and murine infection experiments. We identified virulence determinants common to the two homologs, assembly differences, and a unique metal reservoir within meningococcal SOD that stabilizes the enzyme and may provide a safeguard against copper toxicity. The insights reported here provide a rationale and a basis for SOD-specific drug design and an extension of immunogen design to target two important pathogens that continue to pose global health threats.


Asunto(s)
Complejo Antígeno-Anticuerpo/ultraestructura , Brucella abortus/inmunología , Neisseria meningitidis/inmunología , Superóxido Dismutasa/inmunología , Superóxido Dismutasa/ultraestructura , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Sitios de Unión de Anticuerpos , Vacuna contra la Brucelosis/inmunología , Brucella abortus/patogenicidad , Brucelosis/inmunología , Brucelosis/prevención & control , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inmunización Pasiva/métodos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Ratones , Neisseria meningitidis/patogenicidad , Superóxido Dismutasa/genética , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...