Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 861: 160698, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36481147

RESUMEN

Storms, in subtropical regions such as S.E. China, cause major changes in the physical and biogeochemical fluxes of anthropogenic N species through the river-estuary continuum to the coast. Two weeks continuous observations at a sampling station (Station E) in the upper Jiulong River Estuary (S.E. China) were conducted to track the changes of physical and biogeochemical parameters together with genomic identification of nitrogen cycling microbes through a complete storm event in June 2019. In conjunction with previous N flux measurements, it was found that there was greatly increased flux of N to and through the upper estuary during the storm. During the storm, the freshwater/brackish water boundary moved downstream, and previously deposited organic rich sediment was resuspended. During baseflow, anthropogenically derived ammonium was oxidised dominantly by the marine nitrifying (AOA) microbe Nitrosopelagicus. However, during the storm, the dominant ammonia-oxidizing archaea (AOA) at Station E changed to the riverine genus (Nitrosotenuis) while the marine genus, Nitrosopumilus decreased. At the same time the dominant ammonia-oxidizing bacteria (AOB) was still the marine genus (Nitrosomanas). Estuarine nitrifiers had higher abundance, weighted entropy and diversity during the Flood, suggesting that the high NH4-N and DO during the Rising period of the Flood resulted in a bloom of nitrifiers. The changing gene abundances of nitrifiers were reflected in changes in the concentration and isotopic composition of DIN confirming active nitrification in the oxygen-rich water column. During the storm the numbers of denitrifiers (narG, nirS and nod), DNRA (nrfA) and anammox (hzsB) were found in the water column increased, and the larger fraction was associated with the <22 µm free-living fraction. However it was not possible with the data obtained to estimate what fraction of these anaerobic bacteria were active in the dominantly oxic water column.


Asunto(s)
Amoníaco , Estuarios , Nitrógeno , Oxidación-Reducción , Archaea , Nitrificación , Agua
2.
Front Microbiol ; 13: 867694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464964

RESUMEN

Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.

3.
Sci Total Environ ; 827: 154042, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217039

RESUMEN

Coastal oceans, known as the major nitrous oxide (N2O) source to the atmosphere, are increasingly subject to eutrophication and concurrent near-bottom hypoxia. The natural nitrogen cycle is likely to be altered markedly in hypoxic coastal oceans. However, the processes responsible for N2O production and emission remain elusive because of lacking field rate measurements simultaneously conducted in the water column and sediment. Here, we quantified N2O production rates using a 15N-labeled technique in the water-column and surface sediments off the Changjiang (Yangtze) River estuary, the largest hypoxic zone in the Pacific margins. Our results showed that the estuarine surface sediments were the major source for N2O production, accounting for approximately 90% of the total water-column accumulation and consequent efflux of N2O in the hypoxic zone, whereas the water-column nitrification and denitrification combined only contributed <10%. More importantly, the coupling of nitrification and denitrification at the presence of abundant supply and remineralization of labile organic matter was the main driver of the N2O release from the sediment-water interface in this region. This study highlights the dominant role of benthic processes occurring at the sediment-water interface controlling the coastal N2O budget, as the anthropogenic eutrophication and hypoxia are expanding in coastal oceans.


Asunto(s)
Óxido Nitroso , Ríos , Desnitrificación , Estuarios , Humanos , Hipoxia , Nitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Agua
4.
Environ Sci Technol ; 55(18): 12694-12703, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34506717

RESUMEN

Saharan dust is an important phosphorus (P) supply to remote and oligotrophic parts of the oceans and American lowland tropical rainforests. Phosphorus speciation in aeolian dust ultimately controls the release and bioavailability of P after dust deposition, but the speciation in Saharan dust and its change during the trans-Atlantic transport remains unclear. Using P K-edge X-ray absorption near edge structure (XANES) spectroscopy, we showed that with increasing dust traveling distance from the Sahara Desert to Cape Verde and to Puerto Rico, about 570 and 4000 km, respectively, the proportion of Ca-bound P (Ca-P), including both apatite and non-apatite forms, decreased from 68-73% to 50-71% and to 21-37%. The changes were accompanied by increased iron/aluminum-bound P proportion from 14-25% to 23-46% and to 44-73%, correspondingly. Laboratory simulation experiments suggest that the changes in P speciation can be ascribed to increasing degrees of particle sorting and atmospheric acidification during dust transport. The presence of relatively soluble non-apatite Ca-P in the Cape Verde dust but not in the Puerto Rico dust is consistent with the higher P water solubility of the former than the latter. Our findings provide insights into the controls of atmospheric processes on P speciation, solubility, and stability in Saharan dust.


Asunto(s)
Polvo , Fósforo , Polvo/análisis , Océanos y Mares , Fósforo/análisis , Espectroscopía de Absorción de Rayos X , Rayos X
5.
Sci Total Environ ; 769: 144658, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486166

RESUMEN

Phosphorus (P) is a key nutrient in freshwater systems, often acting as the limiting nutrient. The dominant sources of P in the Jiulong River watershed (S.E. China) are anthropogenic. Dissolved and particulate P species were measured in the West (WJR) and North (NJR) rivers during the wet and dry seasons of 2018 and at their river outlets during a storm (June 2019). Sources of P pollution were characterized from mainly single source subcatchments (dry season). The Agriculture source (WJR) had a total P of 114.7 ± 13.1 µg P L-1, which was mainly dissolved inorganic P (DIP) from excess fertilizer washed from the fields. By contrast, the West Urban source (sewage effluent) was mainly particulate (POP) and dissolved organic P (DOP). The effect of reservoirs in the main NJR was to decrease total particulate P (TPP) and DIP and increase POP, due to increased sedimentation of particles and biological uptake. An increase in all P species was observed at the beginning of the storm, followed by a decrease on the rising hydrograph due to dilution. The final concentration of all P species was higher than baseflow, confirming that storms increase the P flux out of the watershed. P was initially washed off the fields during the storm, and during the falling hydrograph P increased due to interflow and other longer-term sources. The high DIN:DIP ratio confirmed the key importance of P inputs from human activities in substantially altering P sources and cycling, and hence the importance of science-based management to alleviate the eutrophication problem.

6.
Sci Total Environ ; 713: 136389, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31954248

RESUMEN

Anthropogenic activities have greatly accelerated phosphorus (P) inputs from land to coastal seas. The increased P inputs from major rivers can cause adjacent coastal areas to experience seasonal hypoxia with the enhancing coastal eutrophication, which can subsequently increase P cycling and alter long term preservation. Analysis of sediment core measurements including SEDEX P speciation coupled with diagenetic kinetic models were performed on two cores in the coastal area under the Changjiang river plume, that experiences seasonal hypoxia. It was found that the benthic flux of dissolved reactive phosphate (DRP) in the Changjiang Estuary (CJE) was higher than that of adjacent areas of the Chinese coastal shelf. Sedimentary phosphorus transformations of Fe-bound P and organic P resulted in the in-situ formation of authigenic P (probably apatite), which was the major form of reactive P buried in the sediment. P burial efficiency (PBE) was lower than that of the oxic Chinese shelf but higher than that of other seasonally hypoxic areas in the world away from major river inputs. An exponential relationship between PBE and bottom water dissolved oxygen was developed, which suggested a positive feedback mechanism of increased hypoxia increasing P recycling, and hence intensifying eutrophication. The relatively high input of sediment including detrital P from the adjacent major river can explain many of the observed differences in P cycling from other seasonally hypoxic areas.

7.
Sci Total Environ ; 628-629: 1108-1120, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045534

RESUMEN

Climate change is likely to increase the frequency and intensity of tropical storms. However, the impacts of major storms on nutrient cycling processes in the river-estuary-coast continuum are poorly understood. Continuous observations were made at lower river stations and on a transect down the Jiulong River Estuary in south east China for three storms in 2013-2014. There were major increases in both dissolved nutrients and suspended particulate matter (SPM) brought down the river during storms. Strong Estuarine Turbidity Maxima (ETM) were observed during major storms and were the result of SPM brought down rivers augmented by sediment scoured within the Upper Estuary (salinity=0psu) and possibly also from behind the dikes opened for flood control. There were major increases in dissolved nutrients (nitrate, ammonium and phosphate) in the Upper Estuary particularly during major Storms C (July 2013) and D (May 2014). These increases were probably due to river inflows with surrounding runoff, pore water supply and nutrients desorbed from scoured sediment. During major Storm D there were greater nutrient fluxes through the estuary-coast interface compared to the nutrients supplied through the river-estuary interface while the opposite pattern was observed during normal flow. The increased supply of ammonium and phosphate to the coastal region caused increased chlorophyll a once the light inhibiting SPM had been removed from the water column. This is likely to increase the potential of eutrophication. Storm induced increases in N:P:Si supplied from the estuary to the coastal region increased the degree of P limitation.

8.
Proc Natl Acad Sci U S A ; 113(51): 14639-14644, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930294

RESUMEN

Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behavior of P compounds in dust and dust precursor soils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H+ ions present. For H+ < 10-4 mol/g of dust, 1-10% of the total P is dissolved, largely as a result of dissolution of surface-bound forms. At H+ > 10-4 mol/g of dust, the amount of P (and calcium) released has a direct proportionality to the amount of H+ consumed until all inorganic P minerals are exhausted and the final pH remains acidic. Once dissolved, P will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P (Ap-P), the major mineral phase in dust (79-96%), occurs whether calcium carbonate (calcite) is present or not, although the increase in dissolved P is greater if calcite is absent or if the particles are externally mixed. The system was modeled adequately as a simple mixture of Ap-P and calcite. P dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves more slowly and is subject to reprecipitation at cloud water pH. We show that acidification can increase bioavailable P deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable P in oceanic areas where primary productivity is limited by this nutrient (e.g., Mediterranean).


Asunto(s)
Atmósfera/química , Polvo/análisis , Océanos y Mares , Fósforo/análisis , Agua de Mar/química , Calcio/análisis , Carbonato de Calcio/análisis , Ciclo del Carbono , Geografía , Concentración de Iones de Hidrógeno , Hierro/química , Minerales , Nitrógeno , Óxidos/química , Fosfatos/análisis , Solubilidad , Propiedades de Superficie
9.
Environ Sci Technol ; 50(16): 8722-30, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409146

RESUMEN

Direct discharges of treated and untreated wastewater are important sources of nutrients to coastal marine ecosystems and contribute to their eutrophication. Here, we estimate the spatially distributed annual inputs of phosphorus (P) and nitrogen (N) associated with direct domestic wastewater discharges from coastal cities to the Mediterranean Sea (MS). According to our best estimates, in 2003 these inputs amounted to 0.9 × 10(9) mol P yr(-1) and 15 × 10(9) mol N yr(-1), that is, values on the same order of magnitude as riverine inputs of P and N to the MS. By 2050, in the absence of any mitigation, population growth plus higher per capita protein intake and increased connectivity to the sewer system are projected to increase P inputs to the MS via direct wastewater discharges by 254, 163, and 32% for South, East, and North Mediterranean countries, respectively. Complete conversion to tertiary wastewater treatment would reduce the 2050 inputs to below their 2003 levels, but at an estimated additional cost of over €2 billion yr(-1). Management of coastal eutrophication may be best achieved by targeting tertiary treatment upgrades to the most affected near-shore areas, while simultaneously implementing legislation limiting P in detergents and increasing wastewater reuse across the entire basin.


Asunto(s)
Nitrógeno , Fósforo , Monitoreo del Ambiente , Eutrofización , Mar Mediterráneo , Ríos , Aguas Residuales
10.
Environ Sci Technol ; 49(3): 1472-7, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25574950

RESUMEN

Iron (Fe) is a key micronutrient regulating primary productivity in many parts of the global ocean. Dust deposition is an important source of Fe to the surface ocean, but most of this Fe is biologically unavailable. Atmospheric processing and reworking of Fe in dust aerosol can increase the bioavailable Fe inputs to the ocean, yet the processes are not well understood. Here, we experimentally simulate and model the cycling of Fe-bearing dust between wet aerosol and cloud droplets. Our results show that insoluble Fe in dust particles readily dissolves under acidic conditions relevant to wet aerosols. By contrast, under the higher pH conditions generally relevant to clouds, Fe dissolution tends to stop, and dissolved Fe precipitates as poorly crystalline nanoparticles. If the dust-bearing cloud droplets evaporated again (returning to the wet aerosol stage with low pH), those neo-formed Fe nanoparticles quickly redissolve, while the refractory Fe-bearing phases continue to dissolve gradually. Overall, the duration of the acidic, wet aerosol stage ultimately increases the amount of potentially bioavailable Fe delivered to oceans, while conditions in clouds favor the formation of Fe-rich nanoparticles in the atmosphere.


Asunto(s)
Atmósfera/química , Polvo/análisis , Hierro/química , Modelos Teóricos , Aerosoles/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Océanos y Mares , Solubilidad
11.
Environ Sci Technol ; 47(17): 9685-92, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23902405

RESUMEN

Phosphorus (P) in water and sediment in the Yellow River was measured for 21 stations from the source to the Bohai Sea in 2006-2007. The average total particulate matter (TPM) increased from 40 mg/L (upper reaches) to 520 mg/L (middle reaches) and 950 mg/L in the lower reaches of the river. The average dissolved PO4 concentration (0.43 µmol/L) was significantly higher than that in 1980's but lower than the world average level despite high nutrient input to the system. Much of the P input was removed by adsorption, which was due to the high TPM rather than the surface activity of the particles since they had low labile Fe and low affinity for P. The sediment was a sink for P in the middle to lower reaches but not in the upper to middle reaches. TPM has been reduced by more than an order of magnitude due to artificial dams operating over recent decades. Modeling revealed that TPM of 0.2-1 g/L was a critical threshold for the Yellow River, below which most of the phosphate input cannot be removed by the particles and may cause eutrophication. These findings are important for river management and land-ocean modeling of global biogeochemical P cycling.


Asunto(s)
Material Particulado/análisis , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Adsorción , China , Monitoreo del Ambiente , Eutrofización
13.
Sci Total Environ ; 409(11): 2222-32, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21420723

RESUMEN

Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41µM (1300µl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2µmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324µmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Agua Dulce/química , Sedimentos Geológicos/química , Nitrógeno/análisis , Oxígeno/análisis , Fitoplancton , Estaciones del Año , Contaminación Química del Agua/estadística & datos numéricos
14.
Environ Sci Technol ; 44(3): 908-14, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20058857

RESUMEN

Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.


Asunto(s)
Sedimentos Geológicos/química , Nitrógeno/química , Fósforo/química , Ríos/química , Contaminación Química del Agua/prevención & control , Monitoreo del Ambiente , Hongos/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
15.
Environ Sci Technol ; 43(17): 6592-6, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19764222

RESUMEN

The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust


Asunto(s)
Atmósfera , Polvo/análisis , Compuestos Férricos/química , Modelos Teóricos , Nanopartículas/química , Aerosoles , Atmósfera/química , Microscopía Electrónica de Rastreo , Propiedades de Superficie
16.
Sci Total Environ ; 296(1-3): 175-87, 2002 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12398335

RESUMEN

Trace metals and Fe and Mn were measured at vertical spatial resolutions of 2.5 and 5 mm in the top 35 cm of the profundal sediment of a Scottish sea-loch using DGT (diffusive gradients in thin films) technique. DGT probes lower adjacent metal concentrations in pore waters and induce a flux of metal from the solid phase to porewater. The concentrations of metals in porewaters at the interface of the probe were measured during its deployment in a box core. These measurements reflect porewater concentrations of metals and their rates of resupply from the local solid phase of a very small volume (25 microl) of sediment. There was pronounced horizontal and vertical structure in the interfacial concentrations. Horizontal variations were shown by results from adjacent DGT assemblies being markedly different in detail, while vertical structure was measured directly by the DGT-depth profiles. Iron and Mn varied systematically with depth, with both broad and detailed features of Co aligning with those of Mn. There was, however, evidence of additional localised sources of Co that were apparently unrelated to the redox behaviour that Mn typifies, but associated with the remobilization of Ni, possibly from mineral dissolution. Arsenic(III) was remobilized in well-defined zones. Detailed correspondence of As(II) with some Fe features suggest that its release is mechanistically-related to iron oxide dissolution, but the 3 orders of magnitude higher concentrations of Fe may sometimes obscure the association. These results demonstrate that, within sediments, metals may be released in discrete locations that are not measured by conventional porewater sampling techniques due to their horizontal averaging.


Asunto(s)
Sedimentos Geológicos/química , Metales Pesados/análisis , Disponibilidad Biológica , Difusión , Monitoreo del Ambiente , Metales Pesados/química
17.
Environ Sci Technol ; 36(16): 3519-24, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12214643

RESUMEN

The potential importance of adsorption-desorption behavior of phosphorus (P) on the East Mediterranean (E. Med) P cycle was investigated. Contrasting adsorption behavior between Saharan dust (SD) and Nile particulate matter (Nile PM) was observed. SD was a source of P to the region, which released an average of 3.3 +/- 0.3 micromolP/g into the surface seawater and showed no adsorption ability under the conditions close to the E. Med deep water. Saharan dust is therefore unlikely to be the reason for P limitation in the region. By contrast, Nile PM acted dual roles of a sink and source of P in different waters (surface seawater, deep seawater, and river water). A new crossover-type adsorption-desorption model explained the contrasting adsorption behavior and the dual nature of natural particles. The model indicates that when natural particles are transported between different waters, they can be a sink (adsorption) or a source (desorption) of phosphorus depending on the "specific concentration (lambda)", which is the ratio between the aqueous P concentration and the zero equilibrium P concentration (EPC0). EPC0 refers to the solute concentration value where the adsorption isotherm crosses over the aqueous concentration axis. When lambda > 1, adsorption occurs, whereas when lambda < 1, desorption occurs. The model added a general development to the methodology of adsorption isotherm, where, for the first time, effects of solute concentration, solid concentration, and aqueous medium (EPC0) on the adsorption and desorption of P in natural waters were simultaneously described by a single equation. Using the model, it was quantitatively reconstructed that particles emitted during the pre-1964 Nile floods could be a major source of P to Egyptian coastal waters (up to 4800 tonsP/yr), greater than the dissolved P flux (approximately 3200 tonsP/yr), but a trapper of dissolved phosphate in E. Med deep waters.


Asunto(s)
Modelos Teóricos , Fósforo/química , Adsorción , Polvo , Mar Mediterráneo , Tamaño de la Partícula , Fosfatos/química , Fósforo/análisis , Solubilidad , Temperatura
18.
Water Res ; 36(4): 825-34, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11848352

RESUMEN

The potential for iron (hydr)oxides to remove dissolved hydrogen sulphide from seawater has been examined under flow-through conditions. Ferrihydrite (a hydrous iron (III) oxide) was stabilised by precipitation onto zeolite pellets, and rates of sulphide removal were determined under laboratory conditions at pH 8.5. Sulphide removal kinetics were dependent on the initial sulphide concentration, substrate mass and flow rate. The experimental data suggest that these parameters can be optimised to result in the rapid and effective removal of hydrogen sulphide. The results from laboratory experiments compared favourably with sulphide removal kinetics determined in a series of experiments performed online in a recirculating mariculture production system. However, the presence in solution of ligands such as phosphate may also significantly affect reaction rates; a 50% reduction in sulphide removal rate for substrate removed from an online system was partly attributed to phosphate adsorption. The formation of a more crystalline, less reactive iron (hydr)oxide in recharged substrate was the likely result of FeS oxidation, which may also have contributed to the observed reduction in sulphide removal rates. Ferrihydrite-coated zeolite would appear to provide an efficient, low-cost method for sulphide removal, which is particularly suited to relatively small-scale aqueous flow-through systems. The reaction of iron (hydr)oxides with dissolved sulphide is also accompanied by a distinct colour change due to the formation of black FeS(s) which, under appropriate conditions, may be used as a rapid indicator of sulphidic conditions.


Asunto(s)
Contaminantes Atmosféricos/química , Ferritinas/química , Sulfuro de Hidrógeno/química , Contaminantes del Agua/análisis , Purificación del Agua/métodos , Precipitación Química , Compuestos Férricos , Solubilidad , Movimientos del Agua , Contaminación del Agua/prevención & control , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...