Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38132809

RESUMEN

Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.

2.
Biofabrication ; 16(1)2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37939395

RESUMEN

Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.


Asunto(s)
Bioimpresión , Menisco , Bioimpresión/métodos , Células Madre , Ingeniería de Tejidos/métodos , Colágeno , Andamios del Tejido/química
3.
Tissue Eng Part C Methods ; 29(4): 121-133, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719783

RESUMEN

Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Humanos , Hidrocortisona , Diferenciación Celular , Hidrogeles , Condrogénesis , Medios de Cultivo , Ingeniería de Tejidos/métodos
4.
Front Cell Dev Biol ; 10: 1043117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478741

RESUMEN

Medicine today faces the combined challenge of an increasing number of untreatable diseases and fewer drugs reaching the clinic. While pharmaceutical companies have increased the number of drugs in early development and entering phase I of clinical trials, fewer actually successfully pass phase III and launch into the market. In fact, only 1 out of every 9 drugs entering phase I will launch. In vitro preclinical tests are used to predict earlier and better the potential of new drugs and thus avoid expensive clinical trial phases. The most recent developments favor 3D cell culture and human stem cell biology. These 3D humanized models known as organoids better mimic the 3D tissue architecture and physiological cell behavior of healthy and disease models, but face critical issues in production such as small-scale batches, greater costs (when compared to monolayer cultures) and reproducibility. To become the gold standard and most relevant biological model for drug discovery and development, organoid technology needs to integrate biological culture processes with advanced microtechnologies, such as microphysiological systems based on microfluidics technology. Microphysiological systems, known as organ-on-a-chip, mimic physiological conditions better than conventional cell culture models since they can emulate perfusion, mechanical and other parameters crucial for tissue and organ physiology. In addition, they reduce labor cost and human error by supporting automated operation and reduce reagent use in miniaturized culture systems. There is thus a clear advantage in combining organoid culture with microsystems for drug development. The main objective of this review is to address the recent advances in organoids and microphysiological systems highlighting crucial technologies for reaching a synergistic strategy, including bioprinting.

5.
J Vis Exp ; (181)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35435900

RESUMEN

Adipose-derived stromal/stem cells (ASCs) are a subpopulation of cells found in the stromal vascular fraction of human subcutaneous adipose tissue recognized as a classical source of mesenchymal stromal/stem cells. Many studies have been published with ASCs for scaffold-based tissue engineering approaches, which mainly explored the behavior of these cells after their seeding on bioactive scaffolds. However, scaffold-free approaches are emerging to engineer tissues in vitro and in vivo, mainly by using spheroids, to overcome the limitations of scaffold-based approaches. Spheroids are 3D microtissues formed by the self-assembly process. They can better mimic the architecture and microenvironment of native tissues, mainly due to the magnification of cell-to-cell and cell-to-extracellular matrix interactions. Recently, spheroids are mainly being explored as disease models, drug screening studies, and building blocks for 3D bioprinting. However, for 3D bioprinting approaches, numerous spheroids, homogeneous in size and shape, are necessary to biofabricate complex tissue and organ models. In addition, when spheroids are produced automatically, there is little chance for microbiological contamination, increasing the reproducibility of the method. The large-scale production of spheroids is considered the first mandatory step for developing a biofabrication line, which continues in the 3D bioprinting process and finishes in the full maturation of the tissue construct in bioreactors. However, the number of studies that explored the large-scale ASC spheroid production are still scarce, together with the number of studies that used ASC spheroids as building blocks for 3D bioprinting. Therefore, this article aims to show the large-scale production of ASC spheroids using a non-adhesive micromolded hydrogel technique spreading ASC spheroids as building blocks for 3D bioprinting approaches.


Asunto(s)
Bioimpresión , Tejido Adiposo/metabolismo , Bioimpresión/métodos , Humanos , Reproducibilidad de los Resultados , Esferoides Celulares , Células Madre , Ingeniería de Tejidos/métodos
6.
Front Bioeng Biotechnol ; 9: 682498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239860

RESUMEN

Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.

7.
Artif Organs ; 45(10): 1208-1218, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34036603

RESUMEN

As an alternative to the classical tissue engineering approach, bottom-up tissue engineering emerges using building blocks in bioassembly technologies. Spheroids can be used as building blocks to reach a highly complex ordered tissue by their fusion (bioassembly), representing the foundation of biofabrication. In this study, we analyzed the biomechanical properties and the fusion capacity of human adipose stem/stromal cell (ASC) we spheroids during an in vitro model of hypertrophic cartilage established by our research group. Hypertrophic induced-ASC spheroids showed a statistically significant higher Young's modulus at weeks 2 (P < .001) and 3 (P < .0005) compared with non-induced. After fusion, non-induced and induced-ASC spheroids increased the contact area and decreased their pairs' total length. At weeks 3 and 5, induced-ASC spheroids did not fuse completely, and the cells migrate preferentially in the fusion contact region. Alizarin red O staining showed the highest intensity of staining in the fused induced-ASC spheroids at week 5, together with intense staining for collagen type I and osteocalcin. Transmission electron microscopy and element content analysis (X-ray Energy Dispersive Spectroscopy) revealed in the fused quartet at week 3 a crystal-like structure. Hypertrophic induction interferes with the intrinsic capacity of spheroids to fuse. The measurements of contact between spheroids during the fusion process, together with the change in viscoelastic profile to the plastic, will impact the establishment of bioassembly protocols using hypertrophic induced-ASC spheroids as building blocks in biofabrication.


Asunto(s)
Tejido Adiposo/citología , Cartílago/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/fisiología , Fenómenos Biomecánicos , Cartílago/citología , Cartílago/ultraestructura , Células Cultivadas , Humanos , Hipertrofia , Células Madre Mesenquimatosas/fisiología , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
8.
Artif Organs ; 45(6): 548-558, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33264436

RESUMEN

The new coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS-CoV-2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high-throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold-free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS-CoV-2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold-free engineered tissues can contribute to a better comprehension of viral infection by SARS-CoV-2 and to the development of in vitro high-throughput models for drug screening.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Organoides/fisiología , Esferoides Celulares/fisiología , Ingeniería de Tejidos/métodos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Organoides/virología , SARS-CoV-2 , Esferoides Celulares/virología , Andamios del Tejido
9.
World J Stem Cells ; 12(2): 110-122, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32184936

RESUMEN

Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by "bottom-up" approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.

10.
Artif Organs ; 44(7): E288-E299, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950507

RESUMEN

Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis/fisiología , Células Madre Mesenquimatosas/fisiología , Cultivo Primario de Células/métodos , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Cartílago/citología , Cartílago/ultraestructura , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno Tipo X/metabolismo , Medio de Cultivo Libre de Suero , Matriz Extracelular/metabolismo , Humanos , Hipertrofia , Metaloproteinasa 13 de la Matriz/metabolismo , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...