Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 975087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865388

RESUMEN

The least shrew is among the subset of animals that are capable of vomiting and therefore serves as a valuable research model for investigating the biochemistry, molecular biology, pharmacology, and genomics of emesis. Both nausea and vomiting are associated with a variety of illnesses (bacterial/viral infections, bulimia, exposure to toxins, gall bladder disease), conditions (pregnancy, motion sickness, emotional stress, overeating) and reactions to drugs (chemotherapeutics, opiates). The severe discomfort and intense fear associated with the stressful symptoms of nausea and emesis are the major reason for patient non-compliance when being treated with cancer chemotherapeutics. Increased understanding of the physiology, pharmacology and pathophysiology underlying vomiting and nausea can accelerate progress for developing new antiemetics. As a major animal model for emesis, expanding genomic knowledge associated with emesis in the least shrew will further enhance the laboratory utility of this model. A key question is which genes mediate emesis, and are they expressed in response to emetics/antiemetics. To elucidate the mediators of emesis, in particular emetic receptors, their downstream signaling pathways, as well as the shared emetic signals, we carried out an RNA sequencing study focused on the central and peripheral emetic loci, the brainstem and gut. Thus, we sequenced RNA extracted from brainstem and gut tissues from different groups of least shrews treated with either a neurokinin NK1 receptor selective emetic agonist, GR73632 (5 mg/kg, i.p.), its corresponding selective antagonist netupitant (5 mg/kg, i.p.), a combination of these two agents, versus their corresponding vehicle-pretreated controls and drug naïve animals. The resulting sequences were processed using a de novo transcriptome assembly and used it to identify orthologs within human, dog, mouse, and ferret gene sets. We compared the least shrew to human and a veterinary species (dog) that may be treated with vomit-inducing chemotherapeutics, and the ferret, another well-established model organism for emesis research. The mouse was included because it does not vomit. In total, we identified a final set of 16,720 least shrew orthologs. We employed comparative genomics analyses as well as gene ontology enrichment, KEGG pathway enrichment and phenotype enrichment to better understand the molecular biology of genes implicated in vomiting.

2.
Mol Plant Microbe Interact ; 36(1): 26-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306437

RESUMEN

Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Phytophthora , Phytophthora/genética , Filogenia , Transferencia de Gen Horizontal , Genoma , Genómica , Plantas/genética
3.
Plants (Basel) ; 10(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834610

RESUMEN

Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.

4.
Elife ; 92020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32845238

RESUMEN

Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.


Schistosomiasis is a widespread parasitic disease, affecting over 200 million people in tropical countries. It is caused by schistosome worms, which are carried by freshwater snails. These snails release worm larvae into the water, where they can infect humans ­ for example, after bathing or swimming. Treatment options for schistosomiasis are limited. Eliminating the freshwater snails is one way to control the disease, but this is not always effective in the long term and the chemicals used can also harm other animals in the water. Another way to manage schistosomiasis could be to stop the worms from infecting their snail host by breaking the parasites' life cycle without killing the snails. It is already known that some snails are naturally resistant to infection by some strains of schistosomes. Since this immunity is also inherited by the offspring of resistant snails, there is likely a genetic mechanism behind it. However, very little else is known about any genes that might be involved. Tennessen et al. therefore set out to identify what genes were responsible for schistosome resistance and how they worked. The experiments used a large laboratory colony of snails, whose susceptibility to schistosome infection varied among individual animals. To determine the genes behind this variation, Tennessen et al. first searched for areas of DNA that also differed between the immune and infected snails. Comparing genetic sequences across over 1,000 snails revealed a distinct region of DNA that had a large effect on how likely they were to be infected. This section of DNA turned out to be highly diverse, with different snails carrying varying numbers and different forms of the genes within this region. Many of these genes appear to encode proteins found on the surface of snail cells, which could affect whether snails and worms can recognize each other when they come into contact. This in turn could determine whether or not the worms can infect their hosts. These results shed new light on how the snails that carry schistosomes may be able to resist infections. In the future, this knowledge could be key to controlling schistosomiasis, either by releasing genetically engineered, immune snails into the wild (thus making it harder for the parasites to reproduce) or by using the snails' mechanism of resistance to design better drug therapies.


Asunto(s)
Biomphalaria , Resistencia a la Enfermedad , Interacciones Huésped-Parásitos , Proteínas de la Membrana , Esquistosomiasis mansoni , Animales , Biomphalaria/genética , Biomphalaria/inmunología , Biomphalaria/parasitología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Vectores de Enfermedades , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/genética , Esquistosomiasis mansoni/inmunología
5.
Plants (Basel) ; 9(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580425

RESUMEN

For forage and turf grasses, wounding is a predominant stress that often results in extensive loss of vegetative tissues followed by rapid regrowth. Currently, little is known concerning the perception, signaling, or molecular responses associated with wound stress in forage- and turf-related grasses. A transcriptome analysis of Lolium temulentum plants subjected to severe wounding revealed 9413 upregulated and 7704 downregulated, distinct, differentially expressed genes (DEGs). Categories related to signaling, transcription, and response to stimuli were enriched in the upregulated DEGs. Specifically, sequences annotated as enzymes involved in hormone biosynthesis/action and cell wall modifications, mitogen-activated protein kinases, WRKY transcription factors, proteinase inhibitors, and pathogen defense-related DEGs were identified. Surprisingly, DEGs related to heat shock and chaperones were more prevalent in the downregulated DEGs when compared with the upregulated DEGs. This wound transcriptome analysis is the first step in identifying the molecular components and pathways used by grasses in response to wounding. The information gained from the analysis will provide a valuable molecular resource that will be used to develop approaches that can improve the recovery, regrowth, and long-term fitness of forage and turf grasses before/after cutting or grazing.

6.
Front Microbiol ; 11: 490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351458

RESUMEN

The oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, "red core". The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian, and United Kingdom isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), P. rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as United Kingdom races 1, 2, and 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points toward the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens.

7.
BMC Plant Biol ; 20(1): 174, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312226

RESUMEN

BACKGROUND: Biotic and abiotic stresses are the major cause of reduced growth, persistence, and yield in agriculture. Over the past decade, RNA-Sequencing and the use of transgenics with altered expression of stress related genes have been utilized to gain a better understanding of the molecular mechanisms leading to salt tolerance in a variety of species. Identification of transcription factors that, when overexpressed in plants, improve multiple stress tolerance may be valuable for crop improvement, but sometimes overexpression leads to deleterious effects during normal plant growth. RESULTS: Brachypodium constitutively expressing the BdbZIP26:GFP gene showed reduced stature compared to wild type plants (WT). RNA-Seq analysis comparing WT and bZIP26 transgenic plants revealed 7772 differentially expressed genes (DEGs). Of these DEGs, 987 of the DEGs were differentially expressed in all three transgenic lines. Many of these DEGs are similar to those often observed in response to abiotic and biotic stress, including signaling proteins such as kinases/phosphatases, calcium/calmodulin related proteins, oxidases/reductases, hormone production and signaling, transcription factors, as well as disease responsive proteins. Interestingly, there were many DEGs associated with protein turnover including ubiquitin-related proteins, F-Box and U-box related proteins, membrane proteins, and ribosomal synthesis proteins. Transgenic and control plants were exposed to salinity stress. Many of the DEGs between the WT and transgenic lines under control conditions were also found to be differentially expressed in WT in response to salinity stress. This suggests that the over-expression of the transcription factor is placing the plant in a state of stress, which may contribute to the plants diminished stature. CONCLUSION: The constitutive expression of BdbZIP26:GFP had an overall negative effect on plant growth and resulted in stunted plants compared to WT plants under control conditions, and a similar response to WT plants under salt stress conditions. The results of gene expression analysis suggest that the transgenic plants are in a constant state of stress, and that they are trying to allocate resources to survive.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética , Transcriptoma , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Brachypodium/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
8.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
9.
BMC Plant Biol ; 19(1): 222, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138172

RESUMEN

BACKGROUND: Forage and turf grasses are routinely cut and grazed upon throughout their lifecycle. When grasses are cut or damaged, they rapidly release a volatile chemical cocktail called green leaf volatiles (GLV). Previously we have shown that mechanical wounding or exposure to GLV released from cut grass, activated a Lt 46 kDa mitogen-activated protein kinase (MAPK) within 3 min and a 44 kDa MAPK within 15-20 min in the model grass species Lolium temulentum (Lt). Currently very little is known concerning the perception, signaling or molecular responses associated with wound stress in grasses. Since GLV are released during wounding, we wanted to investigate what genes and signaling pathways would be induced in undamaged plants exposed to GLV. RESULTS: RNA-Seq generated transcriptome of Lolium plants exposed to GLV identified 4308 up- and 2794 down-regulated distinct differentially-expressed sequences (DES). Gene Ontology analysis revealed a strong emphasis on signaling, response to stimulus and stress related categories. Transcription factors and kinases comprise over 13% of the total DES found in the up-regulated dataset. The analysis showed a strong initial burst within the first hour of GLV exposure with over 60% of the up-regulated DES being induced. Specifically sequences annotated for enzymes involved in the biosynthesis of jasmonic acid and other plant hormones, mitogen-activated protein kinases and WRKY transcription factors were identified. Interestingly, eleven DES for ferric reductase oxidase, an enzyme involved in iron uptake and transport, were exclusively found in the down-regulated dataset. Twelve DES of interest were selected for qRT-PCR analysis; all displayed a rapid induction one hour after GLV exposure and were also strongly induced by mechanical wounding. CONCLUSION: The information gained from the analysis of this transcriptome and previous studies suggests that GLV released from cut grasses transiently primes an undamaged plant's wound stress pathways for potential oncoming damage, and may have a dual role for inter- as well as intra-plant signaling.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Lolium/genética , Transcriptoma , Compuestos Orgánicos Volátiles/farmacología , Perfilación de la Expresión Génica , Genes de Plantas/genética , Lolium/metabolismo , Redes y Vías Metabólicas/genética , Hojas de la Planta/química , Transducción de Señal/genética , Compuestos Orgánicos Volátiles/química
10.
Front Ecol Evol ; 72019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33235882

RESUMEN

Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 µg/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.

11.
Mol Plant Microbe Interact ; 30(10): 767-769, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28682157

RESUMEN

Phytophthora rubi and P. fragariae are two closely related oomycete plant pathogens that exhibit strong morphological and physiological similarities but are specialized to infect different hosts of economic importance, namely, raspberry and strawberry. Here, we report the draft genome sequences of these two Phytophthora species as a first step toward understanding the genomic processes underlying plant host adaptation in these pathogens.


Asunto(s)
Fragaria/microbiología , Genoma , Phytophthora/genética , Rubus/microbiología , Secuenciación Completa del Genoma , Secuencia de Bases
12.
Methods Mol Biol ; 1057: 305-19, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23918438

RESUMEN

Grass genomes harbor a diverse and complex content of repeated sequences. Most of these repeats occur as abundant transposable elements (TEs), which present unique challenges to sequence, assemble, and annotate genomes. Multiple copies of Long Terminal Repeat (LTR) retrotransposons can hinder sequence assembly and also cause problems with gene annotation. TEs can also contain protein-encoding genes, the ancient remnants of which can mislead gene identification software if not correctly masked. Hence, accurate assembly is crucial for gene annotation. We present TEnest v2.0. TEnest computationally annotates and chronologically displays nested transposable elements. Utilizing organism-specific TE databases as a reference for reconstructing degraded TEs to their ancestral state, annotation of repeats is accomplished by iterative sequence alignment. Subsequently, an output consisting of a graphical display of the chronological nesting structure and coordinate positions of all TE insertions is the result. Both linux command line and Web versions of the TEnest software are available at www.wiselab.org and www.plantgdb.org/tool/, respectively.


Asunto(s)
Elementos Transponibles de ADN/genética , Genómica/métodos , Anotación de Secuencia Molecular/métodos , ADN de Plantas/genética , Bases de Datos Genéticas , Programas Informáticos , Zea mays/genética
13.
Plant Physiol ; 151(2): 483-95, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19675151

RESUMEN

The architecture of grass genomes varies on multiple levels. Large long terminal repeat retrotransposon clusters occupy significant portions of the intergenic regions, and islands of protein-encoding genes are interspersed among the repeat clusters. Hence, advanced assembly techniques are required to obtain completely finished genomes as well as to investigate gene and transposable element distributions. To characterize the organization and distribution of repeat clusters and gene islands across large grass genomes, we present 961- and 594-kb contiguous sequence contigs associated with the rf1 (for restorer of fertility1) locus in the near-centromeric region of maize (Zea mays) chromosome 3. We present two methods for computational finishing of highly repetitive bacterial artificial chromosome clones that have proved successful to close all sequence gaps caused by transposable element insertions. Sixteen repeat clusters were observed, ranging in length from 23 to 155 kb. These repeat clusters are almost exclusively long terminal repeat retrotransposons, of which the paleontology of insertion varies throughout the cluster. Gene islands contain from one to four predicted genes, resulting in a gene density of one gene per 16 kb in gene islands and one gene per 111 kb over the entire sequenced region. The two sequence contigs, when compared with the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes, retain gene colinearity of 50% and 71%, respectively, and 70% and 100%, respectively, for high-confidence gene models. Collinear genes on single gene islands show that while most expansion of the maize genome has occurred in the repeat clusters, gene islands are not immune and have experienced growth in both intragene and intergene locations.


Asunto(s)
Biología Computacional/métodos , Mapeo Contig/métodos , Genes de Plantas , Secuencias Repetitivas Esparcidas/genética , Familia de Multigenes/genética , Análisis de Secuencia de ADN/métodos , Zea mays/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Datos de Secuencia Molecular , Oryza/genética , Homología de Secuencia de Ácido Nucleico , Sorghum/genética , Secuencias Repetidas Terminales/genética
14.
Plant Physiol ; 146(1): 45-59, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18032588

RESUMEN

Organisms with a high density of transposable elements (TEs) exhibit nesting, with subsequent repeats found inside previously inserted elements. Nesting splits the sequence structure of TEs and makes annotation of repetitive areas challenging. We present TEnest, a repeat identification and display tool made specifically for highly repetitive genomes. TEnest identifies repetitive sequences and reconstructs separated sections to provide full-length repeats and, for long-terminal repeat (LTR) retrotransposons, calculates age since insertion based on LTR divergence. TEnest provides a chronological insertion display to give an accurate visual representation of TE integration history showing timeline, location, and families of each TE identified, thus creating a framework from which evolutionary comparisons can be made among various regions of the genome. A database of repeats has been developed for maize (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare) to illustrate the potential of TEnest software. All currently finished maize bacterial artificial chromosomes totaling 29.3 Mb were analyzed with TEnest to provide a characterization of the repeat insertions. Sixty-seven percent of the maize genome was found to be made up of TEs; of these, 95% are LTR retrotransposons. The rate of solo LTR formation is shown to be dissimilar across retrotransposon families. Phylogenetic analysis of TE families reveals specific events of extreme TE proliferation, which may explain the high quantities of certain TE families found throughout the maize genome. The TEnest software package is available for use on PlantGDB under the tools section (http://www.plantgdb.org/prj/TE_nest/TE_nest.html); the source code is available from (http://wiselab.org).


Asunto(s)
Elementos Transponibles de ADN/genética , Plantas/genética , Programas Informáticos , Computadores , Bases de Datos Genéticas , Evolución Molecular , Genoma de Planta/genética , Hordeum/genética , Datos de Secuencia Molecular , Familia de Multigenes , Oryza/genética , Reproducibilidad de los Resultados , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Triticum/genética , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...