Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Liver Int ; 44(5): 1219-1232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375985

RESUMEN

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern with no effective and specific drug treatment available. The rs2642438 minor allele in mitochondrial amidoxime-reducing component 1 (MARC1) results in an aminoacidic substitution (p.Ala165Thr) and associates with protection against MASLD. However, the mechanisms behind this protective effect are unknown. In this study, we examined the consequences of this aminoacidic substitution on protein stability and subcellular localization. METHODS: We overexpressed the human MARC1 A165 (wild-type) or 165T (mutant) in vivo in mice and in vitro in human hepatoma cells (HepG2 and HuH-7), generated several mutants at position 165 by in situ mutagenesis and then examined protein levels. We also generated HepG2 cells stably overexpressing MARC1 A165 or 165T to test the effect of this substitution on MARC1 subcellular localization. RESULTS: MARC1 165T overexpression resulted in lower protein levels than A165 both in vivo and in vitro. Similarly, any mutant at position 165 showed lower protein levels compared to the wild-type protein. We showed that the 165T mutant protein is polyubiquitinated and its degradation is accelerated through lysine-48 ubiquitin-mediated proteasomal degradation. We also showed that the 165T substitution does not affect the MARC1 subcellular localization. CONCLUSIONS: This study shows that alanine at position 165 in MARC1 is crucial for protein stability, and the threonine substitution at this position leads to a hypomorphic protein variant due to lower protein levels. Our result supports the notion that lowering hepatic MARC1 protein level may be a successful therapeutic strategy for treating MASLD.


Asunto(s)
Hígado Graso , Proteínas Mitocondriales , Oxidorreductasas , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Hígado Graso/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
2.
Sci Transl Med ; 14(668): eabh1316, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288279

RESUMEN

Circadian rhythms play a critical role in regulating metabolism, including daily cycles of feeding/fasting. Glucokinase (GCK) is central for whole-body glucose homeostasis and oscillates according to a circadian clock. GCK activators (GKAs) effectively reduce hyperglycemia, but their use is also associated with hypoglycemia, hyperlipidemia, and hepatic steatosis. Given the circadian rhythmicity and natural postprandial activation of GCK, we hypothesized that GKA treatment would benefit from being timed specifically during feeding periods. Acute treatment of obese Zucker rats with the GKA AZD1656 robustly increased flux into all major metabolic pathways of glucose disposal, enhancing glucose elimination. Four weeks of continuous AZD1656 treatment of obese Zucker rats improved glycemic control; however, hepatic steatosis and inflammation manifested. In contrast, timing AZD1656 to feeding periods robustly reduced hepatic steatosis and inflammation in addition to improving glycemia, whereas treatment timed to fasting periods caused overall detrimental metabolic effects. Mechanistically, timing AZD1656 to feeding periods diverted newly synthesized lipid toward direct VLDL secretion rather than intrahepatic storage. In line with increased hepatic insulin signaling, timing AZD1656 to feeding resulted in robust activation of AKT, mTOR, and SREBP-1C after glucose loading, pathways known to regulate VLDL secretion and hepatic de novo lipogenesis. In conclusion, intermittent AZD1656 treatment timed to feeding periods promotes glucose disposal when needed the most, restores metabolic flexibility and hepatic insulin sensitivity, and thereby avoids hepatic steatosis. Thus, chronotherapeutic approaches may benefit the development of GKAs and other drugs acting on metabolic targets.


Asunto(s)
Hígado Graso , Glucoquinasa , Ratas , Animales , Ratas Zucker , Glucoquinasa/metabolismo , Hipoglucemiantes/uso terapéutico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/farmacología , Glucosa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hígado/metabolismo , Cronoterapia , Inflamación/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lípidos
3.
Front Endocrinol (Lausanne) ; 13: 957616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072934

RESUMEN

Cellular senescence is a state of irreversible cell cycle arrest and has been shown to play a key role in many diseases, including metabolic diseases. To investigate the potential contribution of hepatocyte cellular senescence to the metabolic derangements associated with non-alcoholic steatohepatitis (NASH), we treated human hepatocyte cell lines HepG2 and IHH with the senescence-inducing drugs nutlin-3a, doxorubicin and etoposide. The senescence-associated markers p16, p21, p53 and beta galactosidase were induced upon drug treatment, and this was associated with increased lipid storage, increased expression of lipid transporters and the development of hepatic steatosis. Drug-induced senescence also led to increased glycogen content, and increased VLDL secretion from hepatocytes. Senescence was also associated with an increase in glucose and fatty acid oxidation capacity, while de novo lipogenesis was decreased. Surprisingly, cellular senescence caused an overall increase in insulin signaling in hepatocytes, with increased insulin-stimulated phosphorylation of IR, Akt, and MAPK. Together, these data indicate that hepatic senescence plays a causal role in the development of NASH pathogenesis, by modulating glucose and lipid metabolism, favoring steatosis. Our findings contribute to a better understanding of the mechanisms linking cellular senescence and fatty liver disease and support the development of new therapies targeting senescent cells for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Senescencia Celular , Glucosa , Hepatocitos/metabolismo , Humanos , Insulina , Lípidos , Enfermedad del Hígado Graso no Alcohólico/patología
4.
J Lipid Res ; 63(3): 100176, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120993

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kß-ox) and flux (Rß-ox) of FFA into ß-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to ß-oxidation, with increased Kß-ox, Rß-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma ß-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward ß-oxidation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cetosis , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos no Esterificados , Glucósidos , Humanos , Insulina/metabolismo , Cuerpos Cetónicos/metabolismo , Cetosis/inducido químicamente , Cetosis/metabolismo , Hígado/metabolismo , Ratas , Ratas Zucker , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo
5.
Mol Metab ; 36: 100964, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248079

RESUMEN

OBJECTIVE: Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. METHODS: A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. RESULTS: All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. CONCLUSIONS: PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/genética , PPAR gamma/genética , Termogénesis/genética , Factores de Transcripción/metabolismo , Proteína Desacopladora 1/metabolismo
6.
Mol Metab ; 32: 15-26, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029225

RESUMEN

OBJECTIVE: Bone morphogenetic protein 4 (BMP4) adeno-associated viral vectors of serotype 8 (AAV8) gene therapy targeting the liver prevents the development of obesity in initially lean mice by browning the large subcutaneous white adipose tissue (WAT) and enhancing energy expenditure. Here, we examine whether this approach could also reduce established obesity. METHODS: Dietary-induced obese C57BL6/N mice received AAV8 BMP4 gene therapy at 17-18 weeks of age. They were kept on a high-fat diet and phenotypically characterized for an additional 10-12 weeks. Following termination, the mice underwent additional characterization in vitro. RESULTS: Surprisingly, we observed no effect on body weight, browning of WAT, or energy expenditure in these obese mice, but whole-body insulin sensitivity and glucose tolerance were robustly improved. Insulin signaling and insulin-stimulated glucose uptake were increased in both adipose cells and skeletal muscle. BMP4 also decreased hepatic glucose production and reduced gluconeogenic enzymes in the liver, but not in the kidney, in addition to enhancing insulin action in the liver. CONCLUSIONS: Our findings show that BMP4 prevents, but does not reverse, established obesity in adult mice, while it improves insulin sensitivity independent of weight reduction. The BMP antagonist Noggin was increased in WAT in obesity, which may account for the lack of browning.


Asunto(s)
Tejido Adiposo Pardo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/uso terapéutico , Terapia Genética , Insulina/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/inducido químicamente , Transducción de Señal
7.
Theranostics ; 10(2): 585-601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903139

RESUMEN

Macrophages are important regulators of obesity-associated inflammation and PPARα and -γ agonism in macrophages has anti-inflammatory effects. In this study, we tested the efficacy with which liposomal delivery could target the PPARα/γ dual agonist tesaglitazar to macrophages while reducing drug action in common sites of drug toxicity: the liver and kidney, and whether tesaglitazar had anti-inflammatory effects in an in vivo model of obesity-associated dysmetabolism. Methods: Male leptin-deficient (ob/ob) mice were administered tesaglitazar or vehicle for one week in a standard oral formulation or encapsulated in liposomes. Following the end of treatment, circulating metabolic parameters were measured and pro-inflammatory adipose tissue macrophage populations were quantified by flow cytometry. Cellular uptake of liposomes in tissues was assessed using immunofluorescence and a broad panel of cell subset markers by flow cytometry. Finally, PPARα/γ gene target expression levels in the liver, kidney, and sorted macrophages were quantified to determine levels of drug targeting to and drug action in these tissues and cells. Results: Administration of a standard oral formulation of tesaglitazar effectively treated symptoms of obesity-associated dysmetabolism and reduced the number of pro-inflammatory adipose tissue macrophages. Macrophages are the major cell type that took up liposomes with many other immune and stromal cell types taking up liposomes to a lesser extent. Liposome delivery of tesaglitazar did not have effects on inflammatory macrophages nor did it improve metabolic parameters to the extent of a standard oral formulation. Liposomal delivery did, however, attenuate effects on liver weight and liver and kidney expression of PPARα and -γ gene targets compared to oral delivery. Conclusions: These findings reveal for the first time that tesaglitazar has anti-inflammatory effects on adipose tissue macrophage populations in vivo. These data also suggest that while nanoparticle delivery reduced off-target effects, yet the lack of tesaglitazar actions in non-targeted cells such (as hepatocytes and adipocytes) and the uptake of drug-loaded liposomes in many other cell types, albeit to a lesser extent, may have impacted overall therapeutic efficacy. This fulsome analysis of cellular uptake of tesaglitazar-loaded liposomes provides important lessons for future studies of liposome drug delivery.


Asunto(s)
Alcanosulfonatos/farmacología , Riñón/efectos de los fármacos , Liposomas/administración & dosificación , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR alfa/agonistas , PPAR gamma/agonistas , Fenilpropionatos/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Inflamación/metabolismo , Riñón/metabolismo , Liposomas/química , Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología
8.
J Pharmacokinet Pharmacodyn ; 44(3): 203-222, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28224315

RESUMEN

Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.


Asunto(s)
Ácidos Grasos no Esterificados/sangre , Resistencia a la Insulina/fisiología , Insulina/sangre , Niacina/farmacología , Obesidad/sangre , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Ratas Zucker
9.
J Lipid Res ; 58(1): 31-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27875257

RESUMEN

Nicotinic acid (NiAc) is a potent inhibitor of lipolysis, acutely reducing plasma free fatty acid (FFA) concentrations. However, a major FFA rebound is seen during rapid NiAc washout, and sustained exposure is associated with tolerance development, with FFAs returning to pretreatment levels. Our aim was to find a rational NiAc dosing regimen that preserves FFA lowering, sufficient to reverse nonadipose tissue lipid accumulation and improve metabolic control, in obese Zucker rats. We compared feeding-period versus fasting-period NiAc dosing for 5 days: 12 h subcutaneous infusion (programmable, implantable mini-pumps) terminated by gradual withdrawal. It was found that NiAc timed to feeding decreased triglycerides in liver (-47%; P < 0.01) and heart (-38%; P < 0.05) and reduced plasma fructosamine versus vehicle. During oral glucose tolerance test, plasma FFA levels were reduced with amelioration of hyperglycemia and hypertriglyceridemia. Furthermore, timing NiAc to feeding resulted in a general downregulation of de novo lipogenesis (DNL) genes in liver. By contrast, NiAc timed to fasting did not reduce tissue lipids, ameliorate glucose intolerance or dyslipidemia, or alter hepatic DNL genes. In conclusion, NiAc dosing regimen has a major impact on metabolic control in obese Zucker rats. Specifically, a well-defined NiAc exposure, timed to feeding periods, profoundly improves the metabolic phenotype of this animal model.


Asunto(s)
Ácidos Grasos/sangre , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Niacina/administración & dosificación , Obesidad/tratamiento farmacológico , Animales , Glucemia , Ayuno , Prueba de Tolerancia a la Glucosa , Humanos , Hipertrigliceridemia/sangre , Hipertrigliceridemia/tratamiento farmacológico , Insulina/sangre , Resistencia a la Insulina/genética , Lipogénesis/efectos de los fármacos , Obesidad/sangre , Ratas , Ratas Zucker , Triglicéridos/sangre
10.
J Lipid Res ; 56(9): 1679-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26168997

RESUMEN

Acute nicotinic acid (NiAc) administration results in rapid reduction of plasma FFA concentrations. However, sustained NiAc exposure is associated with tolerance development resulting in return of FFA to pretreatment levels. The aim of this study was to determine whether a 12 h rectangular exposure profile (intermittent dose group) could avoid tolerance development and thereby reverse insulin resistance induced by lipid overload. FFA lowering was assessed in male Sprague Dawley (lean) and obese Zucker rats (obese) in response to a 5 h NiAc infusion, in either NiAc-naïve animals or after 5 days of continuous (24 h/day) or intermittent (12 h/day) NiAc dosing (via implantable, programmable minipump). We found that intermittent dosing over 5 days preserved NiAc-induced FFA lowering, comparable to dosing in NiAc-naïve animals. By contrast, following 5 days continuous administration, NiAc-induced FFA lowering was lost. The effect of intermittent NiAc infusion on insulin sensitivity was assessed in obese Zucker rats using hyperinsulinemic-isoglycemic clamps. The acute effect of NiAc to elevate glucose infusion rate (vs. saline control) was indeed preserved with intermittent dosing, while being lost upon continuous infusion. In conclusion, an intermittent but not continuous NiAc dosing strategy succeeded in retaining NiAc's ability to lower FFA and improve insulin sensitivity in obese Zucker rats.-Kroon, T., A. Kjellstedt, P. Thalén, J. Gabrielsson, and N. D. Oakes.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Niacina/administración & dosificación , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Lipólisis/genética , Obesidad/tratamiento farmacológico , Obesidad/genética , ARN Mensajero/biosíntesis , Ratas , Triglicéridos/metabolismo
11.
J Pharmacokinet Pharmacodyn ; 40(6): 623-38, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24114415

RESUMEN

This study investigates the impact of disease on nicotinic acid (NiAc)-induced changes in plasma concentrations of non-esterified fatty acids (NEFA). NiAc was given by constant intravenous infusion to normal Sprague-Dawley and obese Zucker rats, and arterial blood samples were taken for analysis of NiAc, NEFA, insulin and glucose plasma concentrations. The intravenous route was intentionally selected to avoid confounding processes, such as absorption, following extravascular administration. Data were analyzed using nonlinear mixed effects modeling (NONMEM, version VI). The disposition of NiAc in the normal rats was described by a two-compartment model with endogenous synthesis of NiAc and two parallel capacity-limited elimination processes. In the obese rats disposition was described by a one-compartment model with endogenous synthesis of NiAc and one capacity-limited elimination process. The plasma concentration of NiAc drove NEFA (R) turnover via an inhibitory drug-mechanism function acting on the formation of NEFA. NEFA turnover was described by a feedback model with a moderator distributed over a series of transit compartments, where the first compartment (M 1 ) inhibited the formation of R and the last compartment (M N ) stimulated the loss of R. All processes regulating plasma NEFA concentrations were assumed to be captured by the moderator function. Differences in the pharmacodynamic response of the two strains included, in the obese animals, an increased NEFA baseline, diminished rebound and post-rebound oscillation, and a more pronounced slowly developing tolerance during the period of constant drug exposure. The feedback model captured the NiAc-induced changes in NEFA response in both the normal and obese rats. Differences in the parameter estimates between the obese and normal rats included, in the former group, increases in R 0 , k in and p by 44, 41 and 78 %, respectively, and decreases in k out and γ by 64 and 84 %, respectively. The estimates of k tol and IC 50 were similar in both groups. The NiAc-NEFA concentration-response relationship at equilibrium was substantially different in the two groups, being shifted upwards and to the right, and being shallower in the obese rats. The extent of such shifts is important, as they demonstrate the impact of disease at equilibrium and, if ignored, will lead to erroneous dose predictions and, in consequence, poorly designed studies. The proposed models are primarily aimed at screening and selecting candidates with the highest potential of becoming a viable drug in man.


Asunto(s)
Ácidos Grasos no Esterificados/sangre , Retroalimentación Fisiológica , Modelos Biológicos , Niacina/farmacología , Obesidad/sangre , Animales , Relación Dosis-Respuesta a Droga , Infusiones Intravenosas , Masculino , Niacina/administración & dosificación , Niacina/sangre , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...