Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(11): 100379, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020977

RESUMEN

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.

2.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708173

RESUMEN

Wine is composed of multitudinous flavour components and volatile organic compounds that provide this beverage with its attractive properties of taste and aroma. The perceived quality of a wine can be attributed to the absolute and relative concentrations of favourable aroma compounds; hence, increasing the detectable levels of an attractive aroma, such as ß-ionone with its violet and berry notes, can improve the organoleptic qualities of given wine styles. We here describe the generation of a new grape-must fermenting strain of Saccharomyces cerevisiae that is capable of releasing ß-ionone through the heterologous expression of both the enzyme carotenoid cleavage dioxygenase 1 (CCD1) and its substrate, ß-carotene. Haploid laboratory strains of S. cerevisiae were constructed with and without integrated carotenogenic genes and transformed with a plasmid containing the genes of CCD1. These strains were then mated with a sporulated diploid wine industry yeast, VIN13, and four resultant crosses-designated MQ01-MQ04-which were capable of fermenting the must to dryness were compared for their ability to release ß-ionone. Analyses of their fermentation products showed that the MQ01 strain produced a high level of ß-ionone and offers a fermenting hybrid yeast with the potential to enhance the organoleptic qualities of wine.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Odorantes , Norisoprenoides/metabolismo , Fermentación
3.
Methods Mol Biol ; 2378: 19-30, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985691

RESUMEN

The unfolded protein response (UPR) is a highly conserved protein quality control mechanism of eukaryotic cells. Aberrations in this response have been linked to several human diseases, including retinitis pigmentosa and several cancers, and have been shown to have a drastic impact on recombinant protein yields in fungal, insect, and mammalian cell lines. Here, we describe the use of in vivo biosensors to measure and characterize this dynamic cellular response, specifically for detecting the UPR induced by protein overproduction stress in the model cell factory Saccharomyces cerevisiae.


Asunto(s)
Técnicas Biosensibles , Proteínas de Saccharomyces cerevisiae , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mamíferos/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada
4.
ACS Synth Biol ; 10(7): 1640-1650, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34126009

RESUMEN

The unfolded protein response (UPR) is a highly conserved cellular response in eukaryotic cells to counteract endoplasmic reticulum (ER) stress, typically triggered by unfolded protein accumulation. In addition to its relevance to human diseases like cancer, the induction of the UPR has a significant impact on the recombinant protein production in eukaryotic cell factories, including the industrial workhorseSaccharomyces cerevisiae. Being able to accurately detect and measure this ER stress response in single cells, enables the rapid optimization of protein production conditions and high-throughput strain selection strategies. Current methodologies to monitor the UPR in S. cerevisiae are often temporally and spatially removed from the cultivation stage or lack updated systematic evaluation. To this end, we constructed and systematically evaluated a series of high-throughput UPR sensors by different designs, incorporating either yeast native UPR promoters or novel synthetic minimal UPR promoters. The native promoters of DER1 and ERO1 were identified to have suitable UPR biosensor properties and served as an expression level guide for orthogonal sensor benchmarking. Our best synthetic minimal sensor is only 98 bp in length, has minimal homology to other native yeast sequences and displayed superior sensor characteristics. The synthetic minimal UPR sensor was able to accurately distinguish between cells expressing different heterologous proteins and between the different secretion levels of the same protein. This work demonstrated the potential of synthetic UPR biosensors as high-throughput tools to predict the protein production capacity of strains, interrogate protein properties hampering their secretion, and guide rational engineering strategies for optimal heterologous protein production.


Asunto(s)
Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Técnicas Biosensibles , Estrés del Retículo Endoplásmico , Perfilación de la Expresión Génica , Genes Fúngicos , Vectores Genéticos , Glicoproteínas/genética , Proteínas de la Membrana/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
5.
Microorganisms ; 8(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271913

RESUMEN

Genome-scale engineering and custom synthetic genomes are reshaping the next generation of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool which allows rapid genome evolution upon command. This system is able to generate millions of novel genomes with potential valuable phenotypes, but the excessive loss of essential genes often results in poor growth or even the death of cells with useful phenotypes. In this study we expanded the versatility of SCRaMbLE to industrial strains, and evaluated different control measures to optimize genomic rearrangement, whilst limiting cell death. To achieve this, we have developed RED (rapid evolution detection), a simple colorimetric plate-assay procedure to rapidly quantify the degree of genomic rearrangements within a post-SCRaMbLE yeast population. RED-enabled semi-synthetic strains were mated with the haploid progeny of industrial yeast strains to produce stress-tolerant heterozygous diploid strains. Analysis of these heterozygous strains with the RED-assay, genome sequencing and custom bioinformatics scripts demonstrated a correlation between RED-assay frequencies and physical genomic rearrangements. Here we show that RED is a fast and effective method to evaluate the optimal SCRaMbLE induction times of different Cre-recombinase expression systems for the development of industrial strains.

6.
Biotechnol Biofuels ; 13(1): 182, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33292481

RESUMEN

BACKGROUND: For the economic production of biofuels and other valuable products from lignocellulosic waste material, a consolidated bioprocessing (CBP) organism is required. With efficient fermentation capability and attractive industrial qualities, Saccharomyces cerevisiae is a preferred candidate and has been engineered to produce enzymes that hydrolyze cellulosic biomass. Efficient cellulose hydrolysis requires the synergistic action of several enzymes, with the optimum combined activity ratio dependent on the composition of the substrate. RESULTS: In vitro SCRaMbLE generated a library of plasmids containing different ratios of a ß-glucosidase gene (CEL3A) from Saccharomycopsis fibuligera and an endoglucanase gene (CEL5A) from Trichoderma reesei. S. cerevisiae, transformed with the plasmid library, displayed a range of individual enzyme activities and synergistic capabilities. Furthermore, we show for the first time that 4,6-O-(3-ketobutylidene)-4-nitrophenyl-ß-D-cellopentaoside (BPNPG5) is a suitable substrate to determine synergistic Cel3A and Cel5A action and an accurate predictive model for this synergistic action was devised. Strains with highest BPNPG5 activity had an average CEL3A and CEL5A gene cassette copy number of 1.3 ± 0.6 and 0.8 ± 0.2, respectively (ratio of 1.6:1). CONCLUSIONS: Here, we describe a synthetic biology approach to rapidly optimise gene copy numbers to achieve efficient synergistic substrate hydrolysis. This study demonstrates how in vitro SCRaMbLE can be applied to rapidly combine gene constructs in various ratios to allow screening of synergistic enzyme activities for efficient substrate hydrolysis.

7.
Molecules ; 25(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560189

RESUMEN

Olfactory cues are key drivers of our multisensory experiences of food and drink. For example, our perception and enjoyment of the flavour and taste of a wine is primarily steered by its aroma. Making sense of the underlying smells that drive consumer preferences is integral to product innovation as a vital source of competitive advantage in the marketplace, which explains the intense interest in the olfactory component of flavour and the sensory significance of individual compounds, such as one of the most important apocarotenoids for the bouquet of wine, ß-ionone (violet and woody notes). ß-Ionone is formed directly from ß-carotene as a by-product of the actions of carotenoid cleavage dioxygenases (CCDs). The biological production of CCDs in microbial cell factories is one way that important aroma compounds can be generated on a large scale and with reduced costs, while retaining the 'natural' moniker. The CCD family includes the CCD1, CCD2, CCD4, CCD7 and CCD8; however, the functions, co-dependency and interactions of these CCDs remain to be fully elucidated. Here, we review the classification, actions and biotechnology of CCDs, particularly CCD1 and its action on ß-carotene to produce the aromatic apocarotenoid ß-ionone.


Asunto(s)
Dioxigenasas/química , Norisoprenoides/química , Percepción Olfatoria , Percepción del Gusto , Vino , Humanos
8.
Int J Food Microbiol ; 324: 108615, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32371236

RESUMEN

In recent years, CRISPR/Cas9-based genetic editing has become a mainstay in many laboratories including manipulations done with yeast. We utilized this technique to generate a self-cloned wine yeast strain that overexpresses two genes of oenological relevance i.e. the glycerol-3-phosphate dehydrogenase 1 (GPD1) and the alcohol acetyltransferase 1 (ATF1) directly implicated in glycerol and acetate ester production respectively. Riesling wine made from the resulting strain showed increased glycerol and acetate ester levels compared to the parental strain. In addition, significantly less acetic acid levels were measured in wine made with yeast containing both genetic alterations compared to wine made with the strain that only overexpresses GPD1. Thus, this strain provides an alternative strategy for alleviating the accumulation of acetic acid once glycerol production is favoured during alcoholic fermentation with the addition of dramatically increasing acetate esters production.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Vino/microbiología , Ácido Acético/análisis , Ácido Acético/metabolismo , Fermentación , Edición Génica , Glicerol/análisis , Glicerol/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Fenotipo , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis
9.
Biotechnol Appl Biochem ; 67(1): 82-94, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31523843

RESUMEN

The yeast Saccharomyces cerevisiae possesses industrially desirable traits for ethanol production and has been engineered for consolidated bioprocessing (CBP) of lignocellulosic biomass through heterologous cellulase expression. However, S. cerevisiae produces low titers of cellulases and one suspected reason for this is that heterologous proteins induce the unfolded protein response (UPR). Current methods of measuring the UPR are RNA based and can be inconsistent and cumbersome. We developed vector-based biosensors that will detect and quantify UPR activation. The vector consisted of either the Trichoderma reesei xylanase 2 or codon optimized green fluorescent protein (eGFP) reporter genes under the control of the S. cerevisiae PHAC1 or PKAR2 promoters. The eGFP reporter under control of PKAR2 was identified as the preferred combination due to its superior dynamic range and its greater sensitivity when measuring UPR induction in cellulase producing strains. To our knowledge, we show for the first time that significant UPR activation differences could consistently be observed for different cellulase candidate genes unlike previous RNA-based tests, which were unable to detect these differences. The ability to quantify UPR induction will assist in identifying candidate cellulase genes that do not greatly induce the UPR, making them favorable for use in CBP yeasts.


Asunto(s)
Celulasa/biosíntesis , Saccharomyces cerevisiae/metabolismo , Técnicas Biosensibles , Celulasa/metabolismo , Proteínas Recombinantes/biosíntesis , Respuesta de Proteína Desplegada
10.
FEMS Yeast Res ; 17(7)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934415

RESUMEN

Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity.


Asunto(s)
Ascomicetos/enzimología , Cryptococcus neoformans/enzimología , Ureasa/metabolismo , Infecciones Oportunistas Relacionadas con el SIDA , Amoníaco/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidad , Cryptococcus neoformans/genética , Activación Enzimática , Humanos , Cinética , Micosis/microbiología , Esporas Fúngicas , Urea/metabolismo , Ureasa/genética , Factores de Virulencia
11.
Biotechnol J ; 12(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28834329

RESUMEN

The yeast Saccharomyces cerevisiae has a long association with alcoholic fermentation industries and has received renewed interest as a biocatalyst for second-generation bioethanol production. Rational engineering strategies are used to create yeast strains for consolidated bioprocessing of lignocellulosic biomass. Although significant progress is made in this regard with the expression of different cellulolytic activities in yeast, cellobiohydrolase (CBH) titers remain well below ideal levels. Through classical breeding, S. cerevisiae strains with up to twofold increased CBH secretion titers is obtained in strains expressing a single gene copy. An increase of up to 3.5-fold in secreted cellobiohydrolase activity is subsequently shown for strains expressing the heterologous gene on a high copy episomal vector. To our knowledge, this is the first report of classical breeding being used to enhance heterologous protein secretion and also the most significant enhancement of CBH secretion in yeast yet reported. This enhanced secretion phenotype is specific for cellobiohydrolase I secretion, indicating that reporter protein properties might be a major determining factor for efficient protein secretion in yeast. By exploring the latent potential of different S. cerevisiae strains, the authors show that the allele pool of various strains is a valuable engineering resource to enhance secretion in yeast.


Asunto(s)
Cruzamiento , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Biotecnología/métodos , Pruebas de Enzimas , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Ingeniería Genética/métodos , Inestabilidad Genómica , Fenotipo , Saccharomyces cerevisiae/crecimiento & desarrollo
12.
Microb Biotechnol ; 10(2): 264-278, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28083938

RESUMEN

Alcohol is fundamental to the character of wine, yet too much can put a wine off-balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine-producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these 'full-bodied, fruit-forward' wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol-derived 'hotness' on the palate. Consumer-focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well-ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l-1 ). One of the approaches has been to develop 'low-alcohol' yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.


Asunto(s)
Etanol/metabolismo , Glicerol/metabolismo , Microbiología Industrial , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...