Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622989

RESUMEN

Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Estudios Retrospectivos , Antivirales/uso terapéutico , SARS-CoV-2/fisiología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Masculino , Hong Kong/epidemiología , Femenino , Persona de Mediana Edad , Hospitalización , Esparcimiento de Virus , Anciano , Adulto , Resultado del Tratamiento , Factores de Tiempo , Combinación de Medicamentos
2.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328244

RESUMEN

Influenza A and B viruses overcome the host antiviral response to cause a contagious and often severe human respiratory disease. Here, integrative structural biology and biochemistry studies on non-structural protein 1 of influenza B virus (NS1B) reveal a previously unrecognized viral mechanism for innate immune evasion. Conserved basic groups of its C-terminal domain (NS1B-CTD) bind 5'triphosphorylated double-stranded RNA (5'-ppp-dsRNA), the primary pathogen-associated feature that activates the host retinoic acid-inducible gene I protein (RIG-I) to initiate interferon synthesis and the cellular antiviral response. Like RIG-I, NS1B-CTD preferentially binds blunt-end 5'ppp-dsRNA. NS1B-CTD also competes with RIG-I for binding 5'ppp-dsRNA, and thus suppresses activation of RIG-I's ATPase activity. Although the NS1B N-terminal domain also binds dsRNA, it utilizes a different binding mode and lacks 5'ppp-dsRNA end preferences. In cells infected with wild-type influenza B virus, RIG-I activation is inhibited. In contrast, RIG-I activation and the resulting phosphorylation of transcription factor IRF-3 are not inhibited in cells infected with a mutant virus encoding NS1B with a R208A substitution it its CTD that eliminates its 5'ppp-dsRNA binding activity. These results reveal a novel mechanism in which NS1B binds 5'ppp-dsRNA to inhibit the RIG-I antiviral response during influenza B virus infection, and open the door to new avenues for antiviral drug discovery.

3.
Emerg Infect Dis ; 30(2): 262-269, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181800

RESUMEN

We evaluated the population-level benefits of expanding treatment with the antiviral drug Paxlovid (nirmatrelvir/ritonavir) in the United States for SARS-CoV-2 Omicron variant infections. Using a multiscale mathematical model, we found that treating 20% of symptomatic case-patients with Paxlovid over a period of 300 days beginning in January 2022 resulted in life and cost savings. In a low-transmission scenario (effective reproduction number of 1.2), this approach could avert 0.28 million (95% CI 0.03-0.59 million) hospitalizations and save US $56.95 billion (95% CI US $2.62-$122.63 billion). In a higher transmission scenario (effective reproduction number of 3), the benefits increase, potentially preventing 0.85 million (95% CI 0.36-1.38 million) hospitalizations and saving US $170.17 billion (95% CI US $60.49-$286.14 billion). Our findings suggest that timely and widespread use of Paxlovid could be an effective and economical approach to mitigate the effects of COVID-19.


Asunto(s)
COVID-19 , Lactamas , Leucina , Nitrilos , Prolina , Salud Pública , Ritonavir , Humanos , Estados Unidos/epidemiología , SARS-CoV-2 , Antivirales/uso terapéutico , Combinación de Medicamentos
4.
medRxiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732213

RESUMEN

The antiviral drug Paxlovid has been shown to rapidly reduce viral load. Coupled with vaccination, timely administration of safe and effective antivirals could provide a path towards managing COVID-19 without restrictive non-pharmaceutical measures. Here, we estimate the population-level impacts of expanding treatment with Paxlovid in the US using a multi-scale mathematical model of SARS-CoV-2 transmission that incorporates the within-host viral load dynamics of the Omicron variant. We find that, under a low transmission scenario Re∼1.2 treating 20% of symptomatic cases would be life and cost saving, leading to an estimated 0.26 (95% CrI: 0.03, 0.59) million hospitalizations averted, 30.61 (95% CrI: 1.69, 71.15) thousand deaths averted, and US$52.16 (95% CrI: 2.62, 122.63) billion reduction in health- and treatment-related costs. Rapid and broad use of the antiviral Paxlovid could substantially reduce COVID-19 morbidity and mortality, while averting socioeconomic hardship.

5.
Front Chem ; 10: 948553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353143

RESUMEN

Considering the significant impact of the recent COVID-19 outbreak, development of broad-spectrum antivirals is a high priority goal to prevent future global pandemics. Antiviral development processes generally emphasize targeting a specific protein from a particular virus. However, some antiviral agents developed for specific viral protein targets may exhibit broad spectrum antiviral activity, or at least provide useful lead molecules for broad spectrum drug development. There is significant potential for repurposing a wide range of existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease (3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules can provide a diverse and novel set of scaffolds for new drug discovery campaigns. In this study, we compared the sequence- and structure-based similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified 22 proteases with similar active-site structures. This structural similarity, characterized by secondary-structure topology diagrams, is evolutionarily divergent within taxonomically related viruses, but appears to result from evolutionary convergence of protease enzymes between virus families. Inhibitors of these proteases that are structurally similar to the SARS-CoV2 3CLpro protease were identified and assessed as potential inhibitors of SARS-CoV2 3CLpro protease by virtual docking. Several of these molecules have docking scores that are significantly better than known SARS-CoV2 3CLpro inhibitors, suggesting that these molecules are also potential inhibitors of the SARS-CoV2 3CLpro protease. Some have been previously reported to inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral 3C-like proteases.

6.
Cell Rep ; 35(7): 109133, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33984267

RESUMEN

Effective control of COVID-19 requires antivirals directed against SARS-CoV-2. We assessed 10 hepatitis C virus (HCV) protease-inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS-CoV-2 main protease (Mpro) and HCV NS3/4A protease. Virtual docking experiments show that these HCV drugs can potentially bind into the Mpro substrate-binding cleft. We show that seven HCV drugs inhibit both SARS-CoV-2 Mpro protease activity and SARS-CoV-2 virus replication in Vero and/or human cells. However, their Mpro inhibiting activities did not correlate with their antiviral activities. This conundrum is resolved by demonstrating that four HCV protease inhibitor drugs, simeprevir, vaniprevir, paritaprevir, and grazoprevir inhibit the SARS CoV-2 papain-like protease (PLpro). HCV drugs that inhibit PLpro synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, increasing remdesivir's antiviral activity as much as 10-fold, while those that only inhibit Mpro do not synergize with remdesivir.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , COVID-19/virología , Técnicas de Cultivo de Célula , Línea Celular , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Reposicionamiento de Medicamentos/métodos , Sinergismo Farmacológico , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Replicación Viral/efectos de los fármacos
7.
ChemRxiv ; 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32511291

RESUMEN

During the current COVID-19 pandemic more than 160,000 people have died worldwide as of mid-April 2020, and the global economy has been crippled. Effective control of the SARS-CoV2 virus that causes the COVID-19 pandemic requires both vaccines and antivirals. Antivirals are particularly crucial to treat infected people during the period of time that an effective vaccine is being developed and deployed. Because the development of specific antiviral drugs can take a considerable length of time, an important approach is to identify existing drugs already approved for use in humans which could be repurposed as COVID-19 therapeutics. Here we focus on antivirals directed against the SARS-CoV2 Mpro protease, which is required for virus replication. A structural similarity search showed that the Hepatitis C virus (HCV) NS3/4A protease has a striking three-dimensional structural similarity to the SARS-CoV2 Mpro protease, particularly in the arrangement of key active site residues. We used virtual docking predictions to assess the hypothesis that existing drugs already approved for human use or clinical testing that are directed at the HCV NS3/4A protease might fit well into the active-site cleft of the SARS-CoV2 protease (Mpro). AutoDock docking scores for 12 HCV protease inhibitors and 9 HIV-1 protease inhibitors were determined and compared to the docking scores for an α-ketoamide inhibitor of Mpro, which has recently been shown to inhibit SARS-CoV2 virus replication in cell culture. We identified eight HCV protease inhibitors that bound to the Mpro active site with higher docking scores than the α-ketoamide inhibitor, suggesting that these protease inhibitors may effectively bind to the Mpro active site. These results provide the rationale for us to test the identified HCV protease inhibitors as inhibitors of the SARS-CoV2 protease, and as inhibitors of SARS-CoV2 virus replication. Subsequently these repurposed drugs could be evaluated as COVID-19 therapeutics.

8.
Nat Commun ; 11(1): 2750, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487990

RESUMEN

Influenza viruses annually kill 290,000-650,000 people worldwide. Antivirals can reduce death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny. Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent transmission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on population-level incidence using a new model that links viral load dynamics from clinical trial data to between-host transmission. We estimate that ~22 million infections and >6,000 deaths would have been averted in the 2017-2018 epidemic season by administering baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h would almost double the impact. Consequently, scaling up early baloxavir treatment would substantially reduce influenza morbidity and mortality every year. The development of antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail transmission and save lives.


Asunto(s)
Antivirales/uso terapéutico , Epidemias , Gripe Humana/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Oxazinas/uso terapéutico , Piridinas/uso terapéutico , Tiepinas/uso terapéutico , Triazinas/uso terapéutico , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , COVID-19 , Proliferación Celular , Infecciones por Coronavirus/tratamiento farmacológico , Dibenzotiepinas , Humanos , Gripe Humana/virología , Morfolinas , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/farmacología , Pandemias , Neumonía Viral/tratamiento farmacológico , Salud Pública , Piridinas/farmacología , Piridonas , ARN Mensajero/metabolismo , SARS-CoV-2 , Estaciones del Año , Tiepinas/farmacología , Triazinas/farmacología , Carga Viral , Replicación Viral/efectos de los fármacos
9.
Nucleic Acids Res ; 48(1): 304-315, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754723

RESUMEN

Influenza A viruses cause widespread human respiratory disease. The viral multifunctional NS1 protein inhibits host antiviral responses. This inhibition results from the binding of specific cellular antiviral proteins at various positions on the NS1 protein. Remarkably, binding of several proteins also requires the two amino-acid residues in the NS1 N-terminal RNA-binding domain (RBD) that are required for binding double-stranded RNA (dsRNA). Here we focus on the host restriction factor DHX30 helicase that is countered by the NS1 protein, and establish why the dsRNA-binding activity of NS1 is required for its binding to DHX30. We show that the N-terminal 152 amino-acid residue segment of DHX30, denoted DHX30N, possesses all the antiviral activity of DHX30 and contains a dsRNA-binding domain, and that the NS1-DHX30 interaction in vivo requires the dsRNA-binding activity of both DHX30N and the NS1 RBD. We demonstrate why this is the case using bacteria-expressed proteins: the DHX30N-NS1 RBD interaction in vitro requires the presence of a dsRNA platform that binds both NS1 RBD and DHX30N. We propose that a similar dsRNA platform functions in interactions of the NS1 protein with other proteins that requires these same two amino-acid residues required for NS1 RBD dsRNA-binding activity.


Asunto(s)
Interacciones Huésped-Patógeno/genética , ARN Helicasas/genética , ARN Bicatenario/genética , Proteínas no Estructurales Virales/genética , Animales , Sitios de Unión , Clonación Molecular , Perros , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
10.
mBio ; 9(4)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970470

RESUMEN

Influenza A viruses cause an annual contagious respiratory disease in humans and are responsible for periodic high-mortality human pandemics. Pandemic influenza A viruses usually result from the reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the synonymous codons of the avian influenza virus PB1 gene of the 1968 H3N2 pandemic virus. We generated recombinant H3N2 viruses differing only in codon usage of PB1 mRNA and demonstrated that codon usage of the PB1 mRNA of recent H3N2 virus isolates enhances replication in interferon (IFN)-treated human cells without affecting replication in untreated cells, thereby partially alleviating the interferon-induced antiviral state. High-throughput sequencing of tRNA pools explains the reduced inhibition of replication by interferon: the levels of some tRNAs differ between interferon-treated and untreated human cells, and evolution of the codon usage of H3N2 PB1 mRNA is skewed toward interferon-altered human tRNA pools. Consequently, the avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells. Our results indicate that the change in tRNA availabilities resulting from interferon treatment is a previously unknown aspect of the antiviral action of interferon, which has been partially overcome by human-adapted H3N2 viruses.IMPORTANCE Pandemic influenza A viruses that cause high human mortality usually result from reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the avian influenza virus PB1 gene that was incorporated into the 1968 H3N2 pandemic virus. We demonstrate that the coding sequence of the PB1 mRNA of modern H3N2 viruses enhances replication in human cells in which interferon has activated a potent antiviral state. Reduced interferon inhibition results from evolution of PB1 mRNA codons skewed toward the pools of tRNAs in interferon-treated human cells, which, as shown here, differ significantly from the tRNA pools in untreated human cells. Consequently, avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells and are translated more efficiently.


Asunto(s)
Adaptación Biológica , Codón , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Interferones/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Virus Reordenados/genética , Virus Reordenados/inmunología , Virus Reordenados/fisiología , Proteínas Virales/genética
11.
Cell Host Microbe ; 22(5): 627-638.e7, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29107643

RESUMEN

TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex.


Asunto(s)
Gripe Humana/metabolismo , ARN Viral/efectos de los fármacos , ARN Viral/metabolismo , Ribonucleoproteínas/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Células A549 , Antivirales/metabolismo , Factores de Restricción Antivirales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Interferones/metabolismo , Modelos Moleculares , Unión Proteica , ARN Mensajero/metabolismo , Receptores Inmunológicos , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
12.
PLoS Pathog ; 13(8): e1006588, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837667

RESUMEN

The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh) pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.


Asunto(s)
Proteínas Hedgehog/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Transducción de Señal/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Drosophila , Humanos , Inmunohistoquímica , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Ratones , Ratones Endogámicos C57BL
13.
Nat Commun ; 7: 12754, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27587337

RESUMEN

The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP.


Asunto(s)
Citocinas/metabolismo , Virus de la Influenza B/inmunología , ARN Viral/biosíntesis , Ubiquitinas/metabolismo , Proteínas no Estructurales Virales/genética , Células A549 , Animales , Línea Celular , Embrión de Pollo , Citocinas/genética , Perros , Endopeptidasas/genética , Humanos , Virus de la Influenza B/genética , Células de Riñón Canino Madin Darby , Unión Proteica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/genética , Ribonucleoproteínas/metabolismo , Ubiquitina Tiolesterasa , Ubiquitinas/genética , Replicación Viral/genética
14.
Structure ; 24(9): 1562-72, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27545620

RESUMEN

Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza B/genética , Mutación , ARN Viral/química , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Células A549 , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Expresión Génica , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
15.
J Virol ; 90(9): 4696-4705, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26912617

RESUMEN

UNLABELLED: The NS1 protein encoded by influenza A virus antagonizes the interferon response through various mechanisms, including blocking cellular mRNA maturation by binding the cellular CPSF30 3' end processing factor and/or suppressing the activation of interferon regulatory factor 3 (IRF3). In the present study, we identified two truncated NS1 proteins that are translated from internal AUGs at positions 235 and 241 of the NS1 open reading frame. We analyzed the cellular localization and function of the N-truncated NS1 proteins encoded by two influenza A virus strains, Udorn/72/H3N2 (Ud) and Puerto Rico/8/34/H1N1 (PR8). The NS1 protein of PR8, but not Ud, inhibits the activation of IRF3, whereas the NS1 protein of Ud, but not PR8, binds CPSF30. The truncated PR8 NS1 proteins are localized in the cytoplasm, whereas the full-length PR8 NS1 protein is localized in the nucleus. The infection of cells with a PR8 virus expressing an NS1 protein containing mutations of the two in-frame AUGs results in both the absence of truncated NS1 proteins and the reduced inhibition of activation of IRF3 and beta interferon (IFN-ß) transcription. The expression of the truncated PR8 NS1 protein by itself enhances the inhibition of the activation of IRF3 and IFN-ß transcription in Ud virus-infected cells. These results demonstrate that truncated PR8 NS1 proteins contribute to the inhibition of activation of this innate immune response. In contrast, the N-truncated NS1 proteins of the Ud strain, like the full-length NS1 protein, are localized in the nucleus, and mutation of the two in-frame AUGs has no effect on the activation of IRF3 and IFN-ß transcription. IMPORTANCE: Influenza A virus causes pandemics and annual epidemics in the human population. The viral NS1 protein plays a critical role in suppressing type I interferon expression. In the present study, we identified two novel truncated NS1 proteins that are translated from the second and third in-frame AUG codons in the NS1 open reading frame. The N-terminally truncated NS1 encoded by the H1N1 PR8 strain of influenza virus that suppresses IRF3 activation is localized primarily in the cytoplasm. We demonstrate that this truncated NS1 protein by itself enhances this suppression, demonstrating that some strains of influenza A virus express truncated forms of the NS1 protein that function in the inhibition of cytoplasmic antiviral events.


Asunto(s)
Virus de la Influenza A/fisiología , Factor 3 Regulador del Interferón/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Células Cultivadas , Codón Iniciador , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/metabolismo , Gripe Humana/virología , Interferón beta/genética , Ratones , Mutación , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Transporte de Proteínas , Transcripción Genética , Proteínas no Estructurales Virales/química
16.
Proc Natl Acad Sci U S A ; 112(45): 14048-53, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504237

RESUMEN

Previous studies showed that ZAPL (PARP-13.1) exerts its antiviral activity via its N-terminal zinc fingers that bind the mRNAs of some viruses, leading to mRNA degradation. Here we identify a different antiviral activity of ZAPL that is directed against influenza A virus. This ZAPL antiviral activity involves its C-terminal PARP domain, which binds the viral PB2 and PA polymerase proteins, leading to their proteasomal degradation. After the PB2 and PA proteins are poly(ADP-ribosylated), they are associated with the region of ZAPL that includes both the PARP domain and the adjacent WWE domain that is known to bind poly(ADP-ribose) chains. These ZAPL-associated PB2 and PA proteins are then ubiquitinated, followed by proteasomal degradation. This antiviral activity is counteracted by the viral PB1 polymerase protein, which binds close to the PARP domain and causes PB2 and PA to dissociate from ZAPL and escape degradation, explaining why ZAPL only moderately inhibits influenza A virus replication. Hence influenza A virus has partially won the battle against this newly identified ZAPL antiviral activity. Eliminating PB1 binding to ZAPL would be expected to substantially increase the inhibition of influenza A virus replication, so that the PB1 interface with ZAPL is a potential target for antiviral development.


Asunto(s)
Virus de la Influenza A/metabolismo , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Perros , Humanos , Inmunoprecipitación , Células de Riñón Canino Madin Darby , Proteolisis , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitinación
17.
Curr Opin Virol ; 12: 1-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25638592

RESUMEN

Influenza A viruses counteract host antiviral activities, especially the production of interferons (IFNs) and the activities of IFN-induced proteins that inhibit virus replication. The viral NS1 protein is largely responsible for countering these IFN antiviral responses, but there are functional differences between the NS1 proteins of different virus strains. The NS1 protein inhibits IFN production by two mechanisms: inhibition of the activation of IRF3 and IFN transcription; and inhibition of the processing of IFN pre-mRNAs. The NS1 proteins of several virus strains do not inhibit IRF3 activation, and the NS1 protein of one virus strain does not inhibit the processing of IFN pre-mRNAs. Many issues remain concerning the mechanisms of action of the various NS1 proteins in countering the IFN response.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interferones/metabolismo , Proteínas no Estructurales Virales/fisiología , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/virología , Factor 3 Regulador del Interferón/metabolismo , Interferones/genética , Interferones/inmunología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Transcripción Genética , Replicación Viral
19.
J Interferon Cytokine Res ; 34(6): 464-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24905203

RESUMEN

Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins of influenza A virus and Ebola viruses (EBOVs).


Asunto(s)
Ebolavirus/inmunología , Ebolavirus/metabolismo , Interacciones Huésped-Patógeno/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Modelos Moleculares , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/química , Proteínas Virales/química
20.
Cell Host Microbe ; 15(4): 484-93, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24721576

RESUMEN

Influenza A virus RNA synthesis is catalyzed by the viral polymerase comprised of the PA, PB1, and PB2 proteins. We show that the host DDX21 RNA helicase restricts influenza A virus by binding PB1 and inhibiting polymerase assembly, resulting in reduced viral RNA and protein synthesis. Later during infection, the viral NS1 protein overcomes this restriction by binding to DDX21 and displacing PB1. DDX21 binds to a region of the NS1 N-terminal domain that also participates in other critical functions. A virus mutant whose NS1 protein is unable to bind DDX21 exhibits reduced viral protein synthesis at both late and early times of infection, a phenotype converted to wild-type upon DDX21 knockdown. As sequential interaction of PB1 and NS1 with DDX21 leads to temporal regulation of viral gene expression, influenza A virus likely uses the DDX21-NS1 interaction not only to overcome restriction, but also to regulate the viral life cycle.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Virus de la Influenza A/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , Perros , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Inhibidores de la Síntesis del Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , ARN Viral/biosíntesis , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...