Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 183: 116051, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32622233

RESUMEN

Nutrient limitation is a biofouling control strategy in reverse osmosis (RO) membrane systems. In seawater, the assimilable organic carbon content available for bacterial growth ranges from about 50 to 400 µg C·L-1, while the phosphorus concentration ranges from 3 to 11 µg P·L-1. Several studies monitored biofouling development, limiting either carbon or phosphorus. The effect of carbon to phosphorus ratio and the restriction of both nutrients on membrane system performance have not yet been investigated. This study examines the impact of reduced phosphorus concentration (from 25 µg P·L-1 and 3 µg P·L-1, to a low concentration of ≤0.3 µg P·L-1), combined with two different carbon concentrations (250 C L-1 and 30 µg C·L-1), on biofilm development in an RO system. Feed channel pressure drop was measured to determine the effect of the developed biofilm on system performance. The morphology of the accumulated biomass for both carbon concentrations was characterized by optical coherence tomography (OCT) and the biomass amount and composition was quantified by measuring total organic carbon (TOC), adenosine triphosphate (ATP), total cell counts (TCC), and extracellular polymeric substances (EPS) concentration for the developed biofilms under phosphorus restricted (P-restricted) and dosed (P-dosed) conditions. For both carbon concentrations, P-restricted conditions (≤0.3 µg P·L-1) limited bacterial growth (lower values of ATP, TCC). A faster pressure drop increase was observed for P-restricted conditions compared to P-dosed conditions when 250 µg C·L-1 was dosed. This faster pressure drop increase can be explained by a higher area covered by biofilm in the flow channel and a higher amount of produced EPS. Conversely, a slower pressure drop increase was observed for P-restricted conditions compared to P-dosed conditions when 30 µg C·L-1 was dosed. Results of this study demonstrate that P-limitation delayed biofilm formation effectively when combined with low assimilable organic carbon concentration and thereby, lengthening the overall membrane system performance.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Carbono , Membranas Artificiales , Ósmosis , Fósforo
2.
Membranes (Basel) ; 9(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500149

RESUMEN

Routine chemical cleaning with the combined use of sodium hydroxide (NaOH) and hydrochloric acid (HCl) is carried out as a means of biofouling control in reverse osmosis (RO) membranes. The novelty of the research presented herein is in the application of urea, instead of NaOH, as a chemical cleaning agent to full-scale spiral-wound RO membrane elements. A comparative study was carried out at a pilot-scale facility at the Evides Industriewater DECO water treatment plant in the Netherlands. Three fouled 8-inch diameter membrane modules were harvested from the lead position of one of the full-scale RO units treating membrane bioreactor (MBR) permeate. One membrane module was not cleaned and was assessed as the control. The second membrane module was cleaned by the standard alkali/acid cleaning protocol. The third membrane module was cleaned with concentrated urea solution followed by acid rinse. The results showed that urea cleaning is as effective as the conventional chemical cleaning with regards to restoring the normalized feed channel pressure drop, and more effective in terms of (i) improving membrane permeability, and (ii) solubilizing organic foulants and the subsequent removal of the surface fouling layer. Higher biomass removal by urea cleaning was also indicated by the fact that the total organic carbon (TOC) content in the HCl rinse solution post-urea-cleaning was an order of magnitude greater than in the HCl rinse after standard cleaning. Further optimization of urea-based membrane cleaning protocols and urea recovery and/or waste treatment methods is proposed for full-scale applications.

3.
Water Res ; 106: 312-319, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27732867

RESUMEN

The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H2O2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO3-/L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO2- as well as the ONOO- that leads to NO2- formation, but also via the production of radical species (1O2, O2- and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H2O2 doses applied (UV fluences of 500-2100 mJ/cm2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider.


Asunto(s)
Peróxido de Hidrógeno , Nitritos , Nitratos , Oxidación-Reducción , Rayos Ultravioleta , Agua , Purificación del Agua
4.
Water Res ; 91: 285-94, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26803264

RESUMEN

The degradation kinetics of three pesticides - metaldehyde, clopyralid and mecoprop - by ultraviolet photolysis and hydroxyl radical oxidation by low pressure ultraviolet hydrogen peroxide (LP-UV/H2O2) advanced oxidation was determined. Mecoprop was susceptible to both LP-UV photolysis and hydroxyl radical oxidation, and exhibited the fastest degradation kinetics, achieving 99.6% (2.4-log) degradation with a UV fluence of 800 mJ/cm(2) and 5 mg/L hydrogen peroxide. Metaldehyde was poorly degraded by LP-UV photolysis while 97.7% (1.6-log) degradation was achieved with LP-UV/H2O2 treatment at the maximum tested UV fluence of 1000 mJ/cm(2) and 15 mg/L hydrogen peroxide. Clopyralid was hardly susceptible to LP-UV photolysis and exhibited the lowest degradation by LP-UV/H2O2 among the three pesticides. The second-order reaction rate constants for the reactions between the pesticides and OH-radicals were calculated applying a kinetic model for LP-UV/H2O2 treatment to be 3.6 × 10(8), 2.0 × 10(8) and 1.1 × 10(9) M(-1) s(-1) for metaldehyde, clopyralid and mecoprop, respectively. The main LP-UV photolysis reaction product from mecoprop was 2-(4-hydroxy-2-methylphenoxy) propanoic acid, while photo-oxidation by LP-UV/H2O2 treatment formed several oxidation products. The photo-oxidation of clopyralid involved either hydroxylation or dechlorination of the ring, while metaldehyde underwent hydroxylation and produced acetic acid as a major end product. Based on the findings, degradation pathways for the three pesticides by LP-UV/H2O2 treatment were proposed.


Asunto(s)
Peróxido de Hidrógeno/química , Presión , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/química , Acetaldehído/análogos & derivados , Acetaldehído/química , Herbicidas/química , Radical Hidroxilo/química , Cinética , Moluscocidas/química , Oxidación-Reducción , Fotólisis , Ácidos Picolínicos/química
5.
Water Res ; 91: 55-67, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773488

RESUMEN

Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as the first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydrodynamic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydrodynamic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound NF and RO membrane systems. The proposed strategy may also be suitable to develop spacers in e.g. forward osmosis (FO), reverse electrodialysis (RED), membrane distillation (MD), and electrodeionisation (EDI) membrane systems.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Filtración/métodos , Membranas Artificiales , Impresión Tridimensional/instrumentación , Purificación del Agua/métodos , Filtración/instrumentación , Hidrodinámica , Modelos Teóricos , Presión , Purificación del Agua/instrumentación
6.
Chemosphere ; 144: 338-45, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26378870

RESUMEN

An approach to enable a preliminary risk assessment of unknown genotoxic compounds formed by MP UV/H2O2 treatment of nitrate rich water, is described. Since the identity and concentration of specific genotoxic compounds is not established yet, a compound specific risk assessment cannot be performed. This limitation is circumvented by introducing a toxic equivalency factor, converting the concentration of unknown genotoxic compounds expressed by an Ames II test response into equivalent concentrations of 4-nitroquinoline oxide (4-NQO), to enable a preliminary risk assessment. Based on the obtained 4-NQO equivalent concentrations for the tested water samples and 4-NQO carcinogenicity data, an indication of the associated risk of the by MP UV/H2O2 treatment produced nitrated genotoxic compounds is obtained via the margin of exposure (MOE) approach. Based on a carcinogen study by Tang et al. (2004), a body weight of 70 kg and a drinking water consumption of 2 L per day, the 4-NQO equivalent concentration should not exceed 80 ng/L associated with a negligible risk. Application of this approach on samples from MP UV/H2O2 treated water of a full scale drinking water production facility, a 4-NQO equivalent concentration of 107 ng/L was established. These results indicate a safety concern in case this water would be distributed as drinking water without further post treatment.


Asunto(s)
Carcinógenos , Peróxido de Hidrógeno/química , Nitratos , Rayos Ultravioleta , Contaminantes Químicos del Agua , Purificación del Agua/métodos , 4-Nitroquinolina-1-Óxido/toxicidad , Adulto , Carcinógenos/química , Carcinógenos/efectos de la radiación , Carcinógenos/toxicidad , Daño del ADN , Humanos , Pruebas de Mutagenicidad , Nitratos/química , Nitratos/efectos de la radiación , Nitratos/toxicidad , Quinolonas/toxicidad , Medición de Riesgo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Contaminantes Químicos del Agua/toxicidad
7.
Water Res ; 69: 154-161, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463936

RESUMEN

The efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically. The ripening of virgin filter media in a pilot filter column fed by pre-treated manganese containing groundwater was studied for approximately 600 days. Samples of filter media were taken at regular time intervals, and the manganese oxides formed in the coating were analysed by Raman spectroscopy, Electron Paramagnetic Resonance (EPR) and Scanning Electron Microscopy (SEM). From the EPR analyses, it was established that the formation of Birnessite was most likely initiated via biological activity. With the progress of filter ripening and development of the coating, Birnessite formation became predominantly physico-chemical, although biological manganese oxidation continued to contribute to the overall manganese removal. The knowledge that manganese removal in conventional groundwater treatment is initiated biologically could be of help in reducing typically long ripening times by creating conditions that are favourable for the growth of manganese oxidizing bacteria.


Asunto(s)
Fenómenos Químicos , Filtración/instrumentación , Manganeso/aislamiento & purificación , Óxidos/química , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectrometría Raman , Factores de Tiempo , Calidad del Agua
8.
Water Sci Technol ; 66(1): 88-94, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22678204

RESUMEN

Historically, biofouling research on spiral wound membrane systems is typically problem solving oriented. Membrane modules are studied as black box systems, investigated by autopsies. Biofouling is not a simple process. Many factors influence each other in a non-linear fashion. These features make biofouling a subject which is not easy to study using a fundamental scientific approach. Nevertheless to solve or minimize the negative impacts of biofouling, a clear understanding of the interacting basic principles is needed. Recent research into microbiological characterizing of biofouling, small scale test units, application of in situ visualization methods, and model approaches allow such an integrated study of biofouling.


Asunto(s)
Bacterias/crecimiento & desarrollo , Reactores Biológicos , Membranas Artificiales , Bacterias/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Teóricos
9.
Water Res ; 46(12): 3737-53, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22578432

RESUMEN

Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine-g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine-g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine-g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine-g-poly(ethylene glycol) is not effective for biofouling control.


Asunto(s)
Incrustaciones Biológicas , Indoles/análisis , Membranas Artificiales , Polietilenglicoles/análisis , Polímeros/análisis , Animales , Adhesión Bacteriana , Bovinos , Indoles/química , Polietilenglicoles/química , Polímeros/química , Pseudomonas aeruginosa/fisiología , Albúmina Sérica/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...