Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; : e0092923, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934598

RESUMEN

Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.

2.
Clin Proteomics ; 20(1): 14, 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37005570

RESUMEN

BACKGROUND: Clinical bronchoalveolar lavage fluid (BALF) samples are rich in biomolecules, including proteins, and useful for molecular studies of lung health and disease. However, mass spectrometry (MS)-based proteomic analysis of BALF is challenged by the dynamic range of protein abundance, and potential for interfering contaminants. A robust, MS-based proteomics compatible sample preparation workflow for BALF samples, including those of small and large volume, would be useful for many researchers. RESULTS: We have developed a workflow that combines high abundance protein depletion, protein trapping, clean-up, and in-situ tryptic digestion, that is compatible with either qualitative or quantitative MS-based proteomic analysis. The workflow includes a value-added collection of endogenous peptides for peptidomic analysis of BALF samples, if desired, as well as amenability to offline semi-preparative or microscale fractionation of complex peptide mixtures prior to LC-MS/MS analysis, for increased depth of analysis. We demonstrate the effectiveness of this workflow on BALF samples collected from COPD patients, including for smaller sample volumes of 1-5 mL that are commonly available from the clinic. We also demonstrate the repeatability of the workflow as an indicator of its utility for quantitative proteomic studies. CONCLUSIONS: Overall, our described workflow consistently provided high quality proteins and tryptic peptides for MS analysis. It should enable researchers to apply MS-based proteomics to a wide-variety of studies focused on BALF clinical specimens.

3.
Front Cell Infect Microbiol ; 12: 805170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360097

RESUMEN

The leading cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung disease secondary to chronic airway infection and inflammation; however, what drives CF airway infection and inflammation is not well understood. By providing a physiological snapshot of the airway, metabolomics can provide insight into these processes. Linking metabolomic data with microbiome data and phenotypic measures can reveal complex relationships between metabolites, lower airway bacterial communities, and disease outcomes. In this study, we characterize the airway metabolome in bronchoalveolar lavage fluid (BALF) samples from persons with CF (PWCF) and disease control (DC) subjects and use multi-omic network analysis to identify correlations with the airway microbiome. The Biocrates targeted liquid chromatography mass spectrometry (LC-MS) platform was used to measure 409 metabolomic features in BALF obtained during clinically indicated bronchoscopy. Total bacterial load (TBL) was measured using quantitative polymerase chain reaction (qPCR). The Qiagen EZ1 Advanced automated extraction platform was used to extract DNA, and bacterial profiling was performed using 16S sequencing. Differences in metabolomic features across disease groups were assessed univariately using Wilcoxon rank sum tests, and Random forest (RF) was used to identify features that discriminated across the groups. Features were compared to TBL and markers of inflammation, including white blood cell count (WBC) and percent neutrophils. Sparse supervised canonical correlation network analysis (SsCCNet) was used to assess multi-omic correlations. The CF metabolome was characterized by increased amino acids and decreased acylcarnitines. Amino acids and acylcarnitines were also among the features most strongly correlated with inflammation and bacterial burden. RF identified strong metabolomic predictors of CF status, including L-methionine-S-oxide. SsCCNet identified correlations between the metabolome and the microbiome, including correlations between a traditional CF pathogen, Staphylococcus, a group of nontraditional taxa, including Prevotella, and a subnetwork of specific metabolomic markers. In conclusion, our work identified metabolomic characteristics unique to the CF airway and uncovered multi-omic correlations that merit additional study.


Asunto(s)
Fibrosis Quística , Microbiota , Líquido del Lavado Bronquioalveolar/química , Niño , Fibrosis Quística/microbiología , Humanos , Inflamación/metabolismo , Pulmón/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...