Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 147(2)2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31862845

RESUMEN

The development of tissues and organs requires close interaction of cells. To achieve this, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila ortholog Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms, we have conducted a comprehensive genetic analysis of Fas2 We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated Fas2 mutants expressing only single isoforms. In contrast to the null mutation, which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type-specific rescue experiments showed that glial-secreted Fas2 can rescue the Fas2 mutant phenotype to viability. This demonstrates that cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data suggest novel mechanistic aspects of a long-studied adhesion protein.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Glicosilfosfatidilinositoles/metabolismo , Mutación/genética , Neuroglía/metabolismo , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Tráquea/embriología , Tráquea/metabolismo
2.
Dev Biol ; 301(1): 27-37, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17157832

RESUMEN

A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Hormonas Juveniles/fisiología , Neuroglía/citología , Receptores Notch/fisiología , Animales , Drosophila/embriología , Proteínas de Drosophila/genética , Inmunohistoquímica , Hormonas Juveniles/genética , Mutagénesis , Receptores Notch/genética , Transducción de Señal
3.
Neuron ; 52(6): 969-80, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17178401

RESUMEN

In both vertebrates and invertebrates, glial cells wrap axonal processes to ensure electrical conductance. Here we report that Crooked neck (Crn), the Drosophila homolog of the yeast Clf1p splicing factor, is directing peripheral glial cell maturation. We show that crooked neck is expressed and required in glial cells to control migration and axonal wrapping. Within the cytoplasm, Crn interacts with the RNA-binding protein HOW and then translocates to the nucleus where the Crn/HOW complex controls glial differentiation by facilitating splicing of specific target genes. By using a GFP-exon trap approach, we identified some of the in vivo target genes that encode proteins localized in autocellular septate junctions. In conclusion, here we show that glial cell differentiation is controlled by a cytoplasmic assembly of splicing components, which upon translocation to the nucleus promote the splicing of genes involved in the assembly of cellular junctions.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Neuroglía/fisiología , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular , Línea Celular , Núcleo Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Femenino , Genes de Insecto/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Electrónica de Transmisión/métodos , Mutación/fisiología , Neuroglía/ultraestructura , Proteínas Nucleares/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética , Transfección/métodos , Alas de Animales/crecimiento & desarrollo
4.
Mech Dev ; 120(4): 401-13, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12676319

RESUMEN

In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival.


Asunto(s)
Proteínas de Drosophila/fisiología , Ecdisona/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuroglía/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Drosophila , Proteínas de Drosophila/genética , Ecdisona/genética , Genotipo , Inmunohistoquímica , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Fenotipo , Isoformas de Proteínas , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA