Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Traffic ; 19(10): 770-785, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30033679

RESUMEN

Tail-anchored (TA) proteins are embedded into their corresponding membrane via a single transmembrane segment at their C-terminus whereas the majority of the protein is facing the cytosol. So far, cellular factors that mediate the integration of such proteins into the mitochondrial outer membrane were not found. Using budding yeast as a model system, we identified the cytosolic Hsp70 chaperone Ssa1 and the peroxisome import factor Pex19 as import mediators for a subset of mitochondrial TA proteins. Accordingly, deletion of PEX19 results in: (1) growth defect under respiration conditions, (2) alteration in mitochondrial morphology, (3) reduced steady-state levels of the mitochondrial TA proteins Fis1 and Gem1, and (4) hampered in organello import of the TA proteins Fis1 and Gem1. Furthermore, recombinant Pex19 can bind directly the TA proteins Fis1 and Gem1. Collectively, this work identified the first factors that are involved in the biogenesis of mitochondrial TA proteins and uncovered an unexpected function of Pex19.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Mitocondrias/ultraestructura , Peroxisomas/ultraestructura , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
2.
Methods Mol Biol ; 1033: 301-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23996185

RESUMEN

In vitro import experiments with isolated organelles are a powerful tool for investigation of the biogenesis of proteins. A key issue in such experiments is an assay to distinguish between correctly and incorrectly imported proteins. Here we describe an assay to monitor in vitro the proper membrane integration of single-span proteins. In this assay non-imported proteins are distinguished from correctly imported protein species by labelling of unprotected cysteine residues and a resulting migration shift in SDS-PAGE.


Asunto(s)
Bioensayo/métodos , Membranas/química , Membranas/metabolismo , Proteínas/metabolismo , Marcaje Isotópico , Transporte de Proteínas , Proteínas/química , Radioisótopos de Azufre/química
3.
Mol Biol Cell ; 23(20): 3927-35, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918956

RESUMEN

Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell.


Asunto(s)
Ergosterol/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología
4.
J Cell Sci ; 125(Pt 14): 3464-73, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22467864

RESUMEN

Most of the mitochondrial outer membrane (MOM) proteins contain helical transmembrane domains. Some of the single-span proteins and all known multiple-span proteins are inserted into the membrane in a pathway that depends on the MOM protein Mitochondrial Import 1 (Mim1). So far it has been unknown whether additional proteins are required for this process. Here, we describe the identification and characterization of Mim2, a novel protein of the MOM that has a crucial role in the biogenesis of MOM helical proteins. Mim2 physically and genetically interacts with Mim1, and both proteins form the MIM complex. Cells lacking Mim2 exhibit a severely reduced growth rate and lower steady-state levels of helical MOM proteins. In addition, absence of Mim2 leads to compromised assembly of the translocase of the outer mitochondrial membrane (TOM complex), hampered mitochondrial protein import, and defects in mitochondrial morphology. In summary, the current study demonstrates that Mim2 is a novel central player in the biogenesis of MOM proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
J Cell Biol ; 194(3): 397-405, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21825074

RESUMEN

The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica , Transporte de Proteínas
6.
Mol Cell Biol ; 29(22): 5975-88, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19797086

RESUMEN

The TOM complex is the general mitochondrial entry site for newly synthesized proteins. Precursors of beta-barrel proteins initially follow this common pathway and are then relayed to the SAM/TOB complex, which mediates their integration into the outer membrane. Three proteins, Sam50 (Tob55), Sam35 (Tob38/Tom38), and Sam37 (Mas37), have been identified as the core constituents of the latter complex. Sam37 is essential for growth at elevated temperatures, but the function of the protein is currently unresolved. To identify interacting partners of Sam37 and thus shed light on its function, we screened for multicopy suppressors of sam37Delta. We identified the small subunit of the TOM complex, Tom6, as such a suppressor and found a tight genetic interaction between the two proteins. Overexpression of SAM37 suppresses the growth phenotype of tom6Delta, and cells lacking both genes are not viable. The ability of large amounts of Tom6 to suppress the sam37Delta phenotype can be linked to the capacity of Tom6 to stabilize Tom40, an essential beta-barrel protein which is the central component of the TOM complex. Our results suggest that Sam37 is required for growth at higher temperatures, since it enhances the biogenesis of Tom40, and this requirement can be overruled by improved stability of newly synthesized Tom40 molecules.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proliferación Celular , Eliminación de Gen , Dosificación de Gen , Genes Supresores , Viabilidad Microbiana , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación/genética , Fenotipo , Plásmidos/genética , Unión Proteica , Precursores de Proteínas/metabolismo , Estabilidad Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
7.
Plant Mol Biol ; 68(1-2): 159-71, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18543065

RESUMEN

Rhomboid proteins comprise a class of serine proteases that are conserved in all kingdoms of organisms. They contain six or seven transmembrane helices and control a wide range of cellular functions and developmental processes by intramembrane proteolysis. This paper provides experimental evidence for the existence of rhomboid proteases in plant mitochondria and chloroplasts. Among 15 putative rhomboid-like proteins in Arabidopsis thaliana, we selected five predicted as mitochondrially targeted. For these proteins we performed the GFP transient assay, and identified two homologues, AtRBL11 (At5g25752) and AtRBL12 (At1g18600) to be targeted into plastids and mitochondria, respectively. Phylogenetic analysis reveals that AtRBL12 or AtRBL11 have only one clear orthologue in plant species with completely sequenced genomes. Complementation of the yeast lacking a functional copy of mitochondrial rhomboid with AtRBL12 indicates that this plant protease, in contrast to the human orthologue, does not recognize the yeast substrates, cytochrome c peroxidase (Ccp1) or dynamin-like GTPase (Mgm1). In agreement with this, we did not observe processing of Mgm1 when labeled precursor of this protein was incubated in vitro with Arabidopsis mitochondrial extract. Our results imply that plant mitochondrial rhomboids function in a specific manner and thus differ from their yeast and mammal counterparts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriales/metabolismo , Serina Endopeptidasas/metabolismo , Levaduras/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Filogenia , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina Endopeptidasas/genética , Especificidad por Sustrato , Levaduras/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA