Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(22)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465835

RESUMEN

We have investigated the size dependent energy barrier regarding the transition between magnetic vortex and collinear states in dense arrays of magnetic cap structures hosting magnetic vortices. The cap structures were formed by the deposition of soft magnetic thin films on top of large arrays of densely packed polystyrene spheres. The energy barrier associated with the magnetic field assisted switching from a collinear magnetic state to a non-uniform vortex state (or vice versa) was tuned by tailoring the diameter and thickness of the soft magnetic caps. At a sufficient temperature, known as the bifurcation temperature, the thermal energy overcomes this energy barrier and magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In magnetic caps with a fixed thickness, the bifurcation temperature decreases with increasing cap diameter. On the other hand, for a fixed diameter, the bifurcation temperature increases with an increase in film thickness of the cap structure. This study demonstrates that the bifurcation temperature can be easily tailored by changing the magnetostatic energy contribution which in turn affects the energy barrier and thus the magnetic bistability.

2.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614431

RESUMEN

In this work, the process of solid-state dewetting in FePd thin films and its influence on structural transformation and magnetic properties is presented. The morphology, structure and magnetic properties of the FePd system subjected to annealing at 600 °C for different times were studied. The analysis showed a strong correlation between the dewetting process and various physical phenomena. In particular, the transition between the A1 phase and L10 phase is strongly influenced by and inextricably connected with solid-state dewetting. Major changes were observed when the film lost its continuity, including a fast growth of the L10 phase, changes in the magnetization reversal behavior or the induction of magnetic spring-like behavior.

3.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614641

RESUMEN

We describe the magnetic properties of thin iron films deposited on the nanoporous titanium oxide templates and analyze their dependance on nanopore radius. We then compare the results to a continuous iron film of the same thickness. Additionally, we investigate the evolution of the magnetic properties of these films after annealing. We demonstrate that the M(H) loops consist of two magnetic phases originating from the iron layer and iron oxides formed at the titanium oxide/iron interface. We perform deconvolution of hysteresis loops to extract information for each magnetic phase. Finally, we investigate the magnetic interactions between the phases and verify the presence of exchange coupling between them. We observe the altering of the magnetic properties by the nanopores as a magnetic hardening of the magnetic material. The ZFC-FC (Zero-field cooled/field cooled) measurements indicate the presence of a disordered glass state below 50 K, which can be explained by the formation of iron oxide at the titanium oxide-iron interface with a short-range magnetic order.

4.
Materials (Basel) ; 13(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707828

RESUMEN

Using a two-carriers model and the Hikami-Larkin-Nagaoka (HLN) theory, we investigate the influence of large area patterning on magnetotransport properties in bismuth thin films with a thickness of 50 nm. The patterned systems have been produced by means of nanospheres lithography complemented by RF-plasma etching leading to highly ordered antidot arrays with the hexagonal symmetry and a variable antidot size. Simultaneous measurements of transverse and longitudinal magnetoresistance in a broad temperature range provided comprehensive data on transport properties and enabled us to extract the values of charge carrier densities and mobilities. Weak antilocalization signatures observed at low temperatures provided information on spin-orbit scattering length ranging from 20 to 30 nm, elastic scattering length of approx. 60 nm, and strong dependence on temperature phase coherence length. We show that in the absence of antidots the charge carrier transport follow 2-dimensional behavior and the dimensionality for phase-coherent processes changes from two to three dimensions at temperature higher than 10 K. For the antidot arrays, however, a decrease of the power law dephasing exponent is observed which is a sign of the 1D-2D crossover caused by the geometry of the system. This results in changes of scattering events probability and phase coherence lengths depending on the antidot diameters, which opens up opportunity to tailor the magnetotransport characteristics.

5.
Sci Rep ; 9(1): 13276, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527641

RESUMEN

Defects can significantly affect performance of nanopatterned magnetic devices, therefore their influence on the material properties has to be understood well before the material is used in technological applications. However, this is experimentally challenging due to the inability of the control of defect characteristics in a reproducible manner. Here, we construct a micromagnetic model, which accounts for intrinsic and extrinsic defects associated with the polycrystalline nature of the material and with corrugated edges of nanostructures. The predictions of the model are corroborated by the measurements obtained for highly ordered arrays of circular Co/Pd antidots with perpendicular magnetic anisotropy. We found that magnetic properties, magnetic reversal and the evolution of the domain pattern are strongly determined by density of defects, heterogeneity of nanostructures, and edge corrugations. In particular, an increase in the Néel domain walls, as compared to Bloch walls, was observed with a increase of the antidot diameters, suggesting that a neck between two antidots can behave like a nanowire with a width determined by the array period and antidot size. Furthermore, the presence of edge corrugations can lead to the formation of a network of magnetic bubbles, which are unstable in non-patterned flat films.

6.
PLoS One ; 14(7): e0219790, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31306458

RESUMEN

Bioengineered spider silk is a biomaterial that has exquisite mechanical properties, biocompatibility, and biodegradability. Iron oxide nanoparticles can be applied for the detection and analysis of biomolecules, target drug delivery, as MRI contrast agents and as therapeutic agents for hyperthermia-based cancer treatments. In this study, we investigated three bioengineered silks, MS1, MS2 and EMS2, and their potential to form a composite material with magnetic iron oxide nanoparticles (IONPs). The presence of IONPs did not impede the self-assembly properties of MS1, MS2, and EMS2 silks, and spheres formed. The EMS2 spheres had the highest content of IONPs, and the presence of magnetite IONPs in these carriers was confirmed by several methods such as SEM, EDXS, SQUID, MIP-OES and zeta potential measurement. The interaction of EMS2 and IONPs did not modify the superparamagnetic properties of the IONPs, but it influenced the secondary structure of the spheres. The composite particles exhibited a more than two-fold higher loading efficiency for doxorubicin than the plain EMS2 spheres. For both the EMS2 and EMS2/IONP spheres, the drug revealed a pH-dependent release profile with advantageous kinetics for carriers made of the composite material. The composite spheres can be potentially applied for a combined cancer treatment via hyperthermia and drug delivery.


Asunto(s)
Compuestos Férricos/química , Nanopartículas del Metal/química , Ingeniería de Proteínas/métodos , Seda , Nanomedicina Teranóstica/instrumentación , Nanomedicina Teranóstica/métodos , Animales , Materiales Biocompatibles , Medios de Contraste , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Hipertermia Inducida/instrumentación , Nanopartículas de Magnetita/química , Ratones , Células 3T3 NIH , Estructura Secundaria de Proteína , Arañas
7.
Nanoscale ; 11(18): 8930-8939, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31017139

RESUMEN

A highly versatile and scalable path to obtain buried magnetic nanostructures within alloy thin films, while maintaining a flat topography, is described. A magnetic pattern of nanoscale periodicity is generated over ∼cm2 areas by employing a B2 → A2 structural transition in the prototype Fe60Al40 thin alloy films. The phase transition was induced in the confined regions via ion-irradiation through self-assembled nanosphere masks. In this way, large area patterns of a hexagonal symmetry of ferromagnetic nanostructures embedded within a paramagnetic Fe60Al40 thin film are realized. The depth and lateral distribution of the induced magnetization was investigated by magnetometry and microscopy methods. Magnetic contrast imaging as well as simulations shows that the obtained magnetic structures are well defined, with the magnetic behavior tunable via the mask geometry.

8.
Sci Rep ; 8(1): 3682, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487326

RESUMEN

Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.


Asunto(s)
Diagnóstico por Imagen/métodos , Nanopartículas de Magnetita/química , Mioblastos/metabolismo , Apoptosis , Medios de Contraste/química , Compuestos Férricos/química , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Nanopartículas de Magnetita/ultraestructura , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
9.
ACS Appl Mater Interfaces ; 9(38): 33250-33256, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28885819

RESUMEN

Magnetic nanostructures revealing exchange bias effect have gained a lot of interest in recent years due to their possible applications in modern devices with various functionalities. In this paper, we present our studies on patterned [CoO/Co/Pd]10 multilayer where ferromagnetic material is in a form of clusters, instead of being a continuous layer. The system was patterned using nanosphere lithography technique which resulted in creation of an assembly of well-ordered antidots or islands over a large substrate area. We found that the overall hysteresis loop of the films consists of hard and soft components. The hard component hysteresis loop exhibits a large exchange bias field up to -11 kOe. The patterning process causes a slight increase of the exchange field as the antidot radius rises. We also found that the material on edges of the structures gives rise to a soft unbiased magnetization component.

10.
ACS Appl Mater Interfaces ; 8(41): 28159-28165, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27648930

RESUMEN

Magnetic systems exhibiting an exchange bias effect are being considered as materials for applications in data storage devices, sensors, and biomedicine. Because the size of new magnetic devices is being continuously reduced, the influence of thermally induced instabilities in magnetic order has to be taken into account during their fabrication process. In this study, we show the influence of superparamagnetism on the magnetic properties of an exchange-biased [CoO/Co/Pd]10 multilayer. We find that the process of progressive thermal blocking of the superparamagnetic clusters causes an unusually fast rise of the exchange anisotropy field and coercivity and promotes easy-axis switching to the out-of-plane direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...