Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Am Soc Mass Spectrom ; 35(5): 1021-1029, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640444

RESUMEN

Identification of stereo- and positional isomers detected with high-resolution mass spectrometry (HRMS) is often challenging due to near-identical fragmentation spectra (MS2), similar retention times, and collision cross-section values (CCS). Here we address this challenge on the example of hydroxylated polychlorinated biphenyls (OH-PCBs) with the aim to (1) distinguish between isomers of OH-PCBs using two-dimensional ion mobility spectrometry (2D-IMS) and (2) investigate the structure of the fragments of OH-PCBs and their fragmentation mechanisms by ion mobility spectrometry coupled to high-resolution mass spectrometry (IMS-HRMS). The MS2 spectra as well as CCS values of the deprotonated molecule and fragment ions were measured for 18 OH-PCBs using flow injections coupled to a cyclic IMS-HRMS. The MS2 spectra as well as the CCS values of the parent and fragment ions were similar between parent compound isomers; however, ion mobility separation of the fragment ions is hinting at the formation of isomeric fragments. Different parent compound isomers also yielded different numbers of isomeric fragment mobilogram peaks giving new insights into the fragmentation of these compounds and indicating new possibilities for identification. For spectral interpretation, Gibbs free energies and CCS values for the fragment ions of 4'-OH-CB35, 4'-OH-CB79, 2-OH-CB77 and 4-OH-CB107 were calculated and enabled assignment of structures to the isomeric mobilogram peaks of [M-H-HCl]- fragments. Finally, further fragmentation of the isomeric fragments revealed different fragmentation pathways depending on the isomeric fragment ions.

2.
J Chem Inf Model ; 64(8): 3093-3104, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38523265

RESUMEN

The majority of chemicals detected via nontarget liquid chromatography high-resolution mass spectrometry (HRMS) in environmental samples remain unidentified, challenging the capability of existing machine learning models to pinpoint potential endocrine disruptors (EDs). Here, we predict the activity of unidentified chemicals across 12 bioassays related to EDs within the Tox21 10K dataset. Single- and multi-output models, utilizing various machine learning algorithms and molecular fingerprint features as an input, were trained for this purpose. To evaluate the models under near real-world conditions, Monte Carlo sampling was implemented for the first time. This technique enables the use of probabilistic fingerprint features derived from the experimental HRMS data with SIRIUS+CSI:FingerID as an input for models trained on true binary fingerprint features. Depending on the bioassay, the lowest false-positive rate at 90% recall ranged from 0.251 (sr.mmp, mitochondrial membrane potential) to 0.824 (nr.ar, androgen receptor), which is consistent with the trends observed in the models' performances submitted for the Tox21 Data Challenge. These findings underscore the informativeness of fingerprint features that can be compiled from HRMS in predicting the endocrine-disrupting activity. Moreover, an in-depth SHapley Additive exPlanations analysis unveiled the models' ability to pinpoint structural patterns linked to the modes of action of active chemicals. Despite the superior performance of the single-output models compared to that of the multi-output models, the latter's potential cannot be disregarded for similar tasks in the field of in silico toxicology. This study presents a significant advancement in identifying potentially toxic chemicals within complex mixtures without unambiguous identification and effectively reducing the workload for postprocessing by up to 75% in nontarget HRMS.


Asunto(s)
Bioensayo , Disruptores Endocrinos , Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Espectrometría de Masas , Aprendizaje Automático , Humanos , Método de Montecarlo
3.
Anal Chem ; 96(9): 3707-3716, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380899

RESUMEN

Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.


Asunto(s)
Ambiente , Espectrometría de Masas en Tándem , Humanos
4.
Environ Sci Technol ; 58(5): 2458-2467, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38270113

RESUMEN

High-resolution mass spectrometry (HRMS)-based suspect and nontarget screening has identified a growing number of novel per- and polyfluoroalkyl substances (PFASs) in the environment. However, without analytical standards, the fraction of overall PFAS exposure accounted for by these suspects remains ambiguous. Fortunately, recent developments in ionization efficiency (IE) prediction using machine learning offer the possibility to quantify suspects lacking analytical standards. In the present work, a gradient boosted tree-based model for predicting log IE in negative mode was trained and then validated using 33 PFAS standards. The root-mean-square errors were 0.79 (for the entire test set) and 0.29 (for the 7 PFASs in the test set) log IE units. Thereafter, the model was applied to samples of liver from pilot whales (n = 5; East Greenland) and white beaked dolphins (n = 5, West Greenland; n = 3, Sweden) which contained a significant fraction (up to 70%) of unidentified organofluorine and 35 unquantified suspect PFASs (confidence level 2-4). IE-based quantification reduced the fraction of unidentified extractable organofluorine to 0-27%, demonstrating the utility of the method for closing the fluorine mass balance in the absence of analytical standards.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas , Flúor , Mamíferos
5.
Anal Chem ; 95(33): 12329-12338, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37548594

RESUMEN

Nontarget analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is now widely used to detect pollutants in the environment. Shifting away from targeted methods has led to detection of previously unseen chemicals, and assessing the risk posed by these newly detected chemicals is an important challenge. Assessing exposure and toxicity of chemicals detected with nontarget HRMS is highly dependent on the knowledge of the structure of the chemical. However, the majority of features detected in nontarget screening remain unidentified and therefore the risk assessment with conventional tools is hampered. Here, we developed MS2Quant, a machine learning model that enables prediction of concentration from fragmentation (MS2) spectra of detected, but unidentified chemicals. MS2Quant is an xgbTree algorithm-based regression model developed using ionization efficiency data for 1191 unique chemicals that spans 8 orders of magnitude. The ionization efficiency values are predicted from structural fingerprints that can be computed from the SMILES notation of the identified chemicals or from MS2 spectra of unidentified chemicals using SIRIUS+CSI:FingerID software. The root mean square errors of the training and test sets were 0.55 (3.5×) and 0.80 (6.3×) log-units, respectively. In comparison, ionization efficiency prediction approaches that depend on assigning an unequivocal structure typically yield errors from 2× to 6×. The MS2Quant quantification model was validated on a set of 39 environmental pollutants and resulted in a mean prediction error of 7.4×, a geometric mean of 4.5×, and a median of 4.0×. For comparison, a model based on PaDEL descriptors that depends on unequivocal structural assignment was developed using the same dataset. The latter approach yielded a comparable mean prediction error of 9.5×, a geometric mean of 5.6×, and a median of 5.2× on the validation set chemicals when the top structural assignment was used as input. This confirms that MS2Quant enables to extract exposure information for unidentified chemicals which, although detected, have thus far been disregarded due to lack of accurate tools for quantification. The MS2Quant model is available as an R-package in GitHub for improving discovery and monitoring of potentially hazardous environmental pollutants with nontarget screening.


Asunto(s)
Contaminantes Ambientales , Espectrometría de Masas , Cromatografía Liquida , Programas Informáticos , Algoritmos
6.
Anal Bioanal Chem ; 415(21): 5247-5259, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37452839

RESUMEN

Non-target screening with LC/IMS/HRMS is increasingly employed for detecting and identifying the structure of potentially hazardous chemicals in the environment and food. Structural assignment relies on a combination of multidimensional instrumental methods and computational methods. The candidate structures are often isomeric, and unfortunately, assigning the correct structure among a number of isomeric candidate structures still is a key challenge both instrumentally and computationally. While practicing non-target screening, it is usually impossible to evaluate separately the limitations arising from (1) the inability of LC/IMS/HRMS to resolve the isomeric candidate structures and (2) the uncertainty of in silico methods in predicting the analytical information of isomeric candidate structures due to the lack of analytical standards for all candidate structures. Here we evaluate the feasibility of structural assignment of isomeric candidate structures based on in silico-predicted retention time and database collision cross-section (CCS) values as well as based on matching the empirical analytical properties of the detected feature with those of the analytical standards. For this, we investigated 14 candidate structures corresponding to five features detected with LC/HRMS in a spiked surface water sample. Considering the predicted retention times and database CCS values with the accompanying uncertainty, only one of the isomeric candidate structures could be deemed as unlikely; therefore, the annotation of the LC/IMS/HRMS features remained ambiguous. To further investigate if unequivocal annotation is possible via analytical standards, the reversed-phase LC retention times and low- and high-resolution ion mobility spectrometry separation, as well as high-resolution MS2 spectra of analytical standards were studied. Reversed-phase LC separated the highest number of candidate structures while low-resolution ion mobility and high-resolution MS2 spectra provided little means for pinpointing the correct structure among the isomeric candidate structures even if analytical standards were available for comparison. Furthermore, the question arises which prediction accuracy is required from the in silico methods to par the analytical separation. Based on the experimental data of the isomeric candidate structures studied here and previously published in the literature (516 retention time and 569 CCS values), we estimate that to reduce the candidate list by 95% of the structures, the confidence interval of the predicted retention times would need to decrease to below 0.05 min for a 15-min gradient while that of CCS values would need to decrease to 0.15%. Hereby, we set a clear goal to the in silico methods for retention time and CCS prediction.

7.
Anal Chim Acta ; 1274: 341573, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455083

RESUMEN

Systematic selection of mobile phase and column chemistry type can be critical for achieving optimal chromatographic separation, high sensitivity, and low detection limits in liquid chromatography electrospray high resolution mass spectrometry (LC/MS). However, the selection process is challenging for non-targeted screening where the compounds of interest are not preselected nor available for method optimization. To provide general guidance, twenty different mobile phase compositions and four columns were compared for the analysis of 78 compounds with a wide range of physicochemical properties (logP range from -1.46 to 5.48), and analyte sensitivity was compared between methods. The pH, additive type, column, and organic modifier had significant effects on the analyte response factors, and acidic mobile phases (e.g. 0.1% formic acid) yielded highest sensitivity. In some cases, the effect was attributable to the difference in organic modifier content at the time of elution, depending on the mobile phase and column chemistry. Based on these findings, 0.1% formic acid, 0.1% ammonia and 5.0 mM ammonium fluoride were further evaluated for their performance in non-targeted LC/ESI/HRMS analysis of wastewater treatment plan influent and effluent, using a data dependent MS2 acquisition and two different data processing workflows (MS-DIAL, patRoon 2.1) to compare number of detected features and sensitivity. Both data-processing workflows indicated that 0.1% formic acid yielded the highest number of features in full scan spectrum (MS1), as well as the highest number of features that triggered fragmentation spectra (MS2) when dynamic exclusion was used.

8.
J Am Soc Mass Spectrom ; 34(7): 1511-1518, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37358930

RESUMEN

Supercritical fluid chromatography (SFC) is a promising, sustainable, and complementary alternative to liquid chromatography (LC) and has often been coupled with high resolution mass spectrometry (HRMS) for nontarget screening (NTS). Recent developments in predicting the ionization efficiency for LC/ESI/HRMS have enabled quantification of chemicals detected in NTS even if the analytical standards of the detected and tentatively identified chemicals are unavailable. This poses the question of whether analytical standard free quantification can also be applied in SFC/ES/HRMS. We evaluate both the possibility to transfer an ionization efficiency predictions model, previously trained on LC/ESI/HRMS data, to SFC/ESI/HRMS as well as training a new predictive model on SFC/ESI/HRMS data for 127 chemicals. The response factors of these chemicals ranged over 4 orders of magnitude in spite of a postcolumn makeup flow, expectedly enhancing the ionization of the analytes. The ionization efficiency values were predicted based on a random forest regression model from PaDEL descriptors and predicted values showed statistically significant correlation with the measured response factors (p < 0.05) with Spearman's rho of 0.584 and 0.669 for SFC and LC data, respectively. Moreover, the most significant descriptors showed similarities independent of the chromatography used for collecting the training data. We also investigated the possibility to quantify the detected chemicals based on predicted ionization efficiency values. The model trained on SFC data showed very high prediction accuracy with median prediction error of 2.20×, while the model pretrained on LC/ESI/HRMS data yielded median prediction error of 5.11×. This is expected, as the training and test data for SFC/ESI/HRMS have been collected on the same instrument with the same chromatography. Still, the correlation observed between response factors measured with SFC/ESI/HRMS and predicted with a model trained on LC data hints that more abundant LC/ESI/HRMS data prove useful in understanding and predicting the ionization behavior in SFC/ESI/HRMS.

9.
Environ Sci Technol ; 56(22): 15508-15517, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269851

RESUMEN

To achieve water quality objectives of the zero pollution action plan in Europe, rapid methods are needed to identify the presence of toxic substances in complex water samples. However, only a small fraction of chemicals detected with nontarget high-resolution mass spectrometry can be identified, and fewer have ecotoxicological data available. We hypothesized that ecotoxicological data could be predicted for unknown molecular features in data-rich high-resolution mass spectrometry (HRMS) spectra, thereby circumventing time-consuming steps of molecular identification and rapidly flagging molecules of potentially high toxicity in complex samples. Here, we present MS2Tox, a machine learning method, to predict the toxicity of unidentified chemicals based on high-resolution accurate mass tandem mass spectra (MS2). The MS2Tox model for fish toxicity was trained and tested on 647 lethal concentration (LC50) values from the CompTox database and validated for 219 chemicals and 420 MS2 spectra from MassBank. The root mean square error (RMSE) of MS2Tox predictions was below 0.89 log-mM, while the experimental repeatability of LC50 values in CompTox was 0.44 log-mM. MS2Tox allowed accurate prediction of fish LC50 values for 22 chemicals detected in water samples, and empirical evidence suggested the right directionality for another 68 chemicals. Moreover, by incorporating structural information, e.g., the presence of carbonyl-benzene, amide moieties, or hydroxyl groups, MS2Tox outperforms baseline models that use only the exact mass or log KOW.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas , Peces , Ecotoxicología , Aprendizaje Automático
10.
Environ Sci Technol ; 56(17): 12460-12472, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994059

RESUMEN

Lower chlorinated polychlorinated biphenyls (LC-PCBs) and their metabolites make up a class of environmental pollutants implicated in a range of adverse outcomes in humans; however, the metabolism of LC-PCBs in human models has received little attention. Here we characterize the metabolism of PCB 2 (3-chlorobiphenyl), an environmentally relevant LC-PCB congener, in HepG2 cells with in silico prediction and nontarget high-resolution mass spectrometry. Twenty PCB 2 metabolites belonging to 13 metabolite classes, including five dechlorinated metabolite classes, were identified in the cell culture media from HepG2 cells exposed for 24 h to 10 µM or 3.6 nM PCB 2. The PCB 2 metabolite profiles differed from the monochlorinated metabolite profiles identified in samples from an earlier study with PCB 11 (3,3'-dichlorobiphenyl) under identical experimental conditions. A dechlorinated dihydroxylated metabolite was also detected in human liver microsomal incubations with monohydroxylated PCB 2 metabolites but not PCB 2. These findings demonstrate that the metabolism of LC-PCBs in human-relevant models involves the formation of dechlorination products. In addition, untargeted metabolomic analyses revealed an altered bile acid biosynthesis in HepG2 cells. Our results indicate the need to study the disposition and toxicity of complex PCB 2 metabolites, including novel dechlorinated metabolites, in human-relevant models.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Compuestos de Bifenilo , Línea Celular , Contaminantes Ambientales/metabolismo , Humanos , Hidroxilación , Bifenilos Policlorados/metabolismo
11.
Anal Chem ; 94(30): 10601-10609, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35861491

RESUMEN

The structural annotation of isomeric metabolites remains a key challenge in untargeted electrospray ionization/high-resolution mass spectrometry (ESI/HRMS) metabolomic analysis. Many metabolites are polyfunctional compounds that may form protomers in electrospray ionization sources and therefore yield multiple peaks in ion mobility spectra. Protomer formation is strongly structure-specific. Here, we explore the possibility of using protomer formation for structural elucidation in metabolomics on the example of caffeine, its eight metabolites, and structurally related compounds. It is observed that two-thirds of the studied compounds formed high- and low-mobility species in high-resolution ion mobility. Structures in which proton hopping was hindered by a methyl group at the purine ring nitrogen (position 3) yielded structure-indicative fragments with collision-induced dissociation (CID) for high- and low-mobility ions. For compounds where such a methyl group was not present, a gas-phase equilibrium could be observed for tautomeric species with two-dimensional ion mobility. We show that the protomer formation and the gas-phase properties of the protomers can be related to the structure of caffeine metabolites and facilitate the identification of the structural isomers.


Asunto(s)
Cafeína , Espectrometría de Masa por Ionización de Electrospray , Iones , Isomerismo , Subunidades de Proteína , Protones , Espectrometría de Masa por Ionización de Electrospray/métodos
12.
Anal Bioanal Chem ; 414(17): 4919-4933, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35699740

RESUMEN

Non-targeted analysis (NTA) methods are widely used for chemical discovery but seldom employed for quantitation due to a lack of robust methods to estimate chemical concentrations with confidence limits. Herein, we present and evaluate new statistical methods for quantitative NTA (qNTA) using high-resolution mass spectrometry (HRMS) data from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Experimental intensities of ENTACT analytes were observed at multiple concentrations using a semi-automated NTA workflow. Chemical concentrations and corresponding confidence limits were first estimated using traditional calibration curves. Two qNTA estimation methods were then implemented using experimental response factor (RF) data (where RF = intensity/concentration). The bounded response factor method used a non-parametric bootstrap procedure to estimate select quantiles of training set RF distributions. Quantile estimates then were applied to test set HRMS intensities to inversely estimate concentrations with confidence limits. The ionization efficiency estimation method restricted the distribution of likely RFs for each analyte using ionization efficiency predictions. Given the intended future use for chemical risk characterization, predicted upper confidence limits (protective values) were compared to known chemical concentrations. Using traditional calibration curves, 95% of upper confidence limits were within ~tenfold of the true concentrations. The error increased to ~60-fold (ESI+) and ~120-fold (ESI-) for the ionization efficiency estimation method and to ~150-fold (ESI+) and ~130-fold (ESI-) for the bounded response factor method. This work demonstrates successful implementation of confidence limit estimation strategies to support qNTA studies and marks a crucial step towards translating NTA data in a risk-based context.


Asunto(s)
Incertidumbre , Calibración , Espectrometría de Masas/métodos
13.
Anal Bioanal Chem ; 414(25): 7451-7460, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35507099

RESUMEN

Hydroxylated PCBs are an important class of metabolites of the widely distributed environmental contaminants polychlorinated biphenyls (PCBs). However, the absence of authentic standards is often a limitation when subject to detection, identification, and quantification. Recently, new strategies to quantify compounds detected with non-targeted LC/ESI/HRMS based on predicted ionization efficiency values have emerged. Here, we evaluate the impact of chemical space coverage and sample matrix on the accuracy of ionization efficiency-based quantification. We show that extending the chemical space of interest is crucial in improving the performance of quantification. Therefore, we extend the ionization efficiency-based quantification approach to hydroxylated PCBs in serum samples with a retraining approach that involves 14 OH-PCBs and validate it with an additional four OH-PCBs. The predicted and measured ionization efficiency values of the OH-PCBs agreed within the mean error of 2.1 × and enabled quantification with the mean error of 4.4 × or better. We observed that the error mostly arose from the ionization efficiency predictions and the impact of matrix effects was of less importance, varying from 37 to 165%. The results show that there is potential for predictive machine learning models for quantification even in very complex matrices such as serum. Further, retraining the already developed models provides a timely and cost-effective solution for extending the chemical space of the application area.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Ambientales/metabolismo , Humanos , Hidroxilación , Bifenilos Policlorados/análisis , Estándares de Referencia
14.
Anal Chim Acta ; 1204: 339402, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35397906

RESUMEN

Non-targeted screening with LC/ESI/HRMS aims to identify the structure of the detected compounds using their retention time, exact mass, and fragmentation pattern. Challenges remain in differentiating between isomeric compounds. One untapped possibility to facilitate identification of isomers relies on different ionic species formed in electrospray. In positive ESI mode, both protonated molecules and adducts can be formed; however, not all isomeric structures form the same ionic species. The complicated mechanism of adduct formation has hindered the use of this molecular characteristic in the structural elucidation in non-targeted screening. Here, we have studied the adduct formation for 94 small molecules with ion mobility spectra and compared collision cross-sections of the respective ions. Based on the results we developed a fast support vector machine classifier with polynomial kernels for accurately predicting the sodium adduct formation in ESI/HRMS. The model is trained on five independent data sets from different laboratories and uses the graph-based connectivity of functional groups and PubChem fingerprints to predict the sodium adduct formation in ESI/HRMS. The validation of the model showed an accuracy of 74.7% (balanced accuracy 70.0%) on a dataset from an independent laboratory, which was not used in the training of the model. Lastly, we applied the classification algorithm to the SusDat database by NORMAN network to evaluate the proportion of isomeric compounds that could be distinguished based on predicted sodium adduct formation. It was observed that sodium adduct formation probability can provide additional selectivity for about one quarter of the exact masses and, therefore, shows practical utility for structural assignment in non-targeted screening.


Asunto(s)
Sodio , Espectrometría de Masa por Ionización de Electrospray , Iones/química , Isomerismo , Aprendizaje Automático , Sodio/química , Espectrometría de Masa por Ionización de Electrospray/métodos
15.
J Chromatogr A ; 1666: 462867, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35139450

RESUMEN

Structural elucidation of compounds detected with liquid chromatography coupled to high resolution mass spectrometry is a challenging and time-consuming step in the workflow of non-targeted analysis and often requires manual validation of the results. Retention time, alongside exact mass, isotope pattern, fragmentation spectra, and collision cross-section, is valuable information for ruling out unlikely structures and increasing the confidence in others. Different approaches to predict retention times have been used previously for reversed phase chromatography and hydrophilic interaction liquid chromatography (HILIC), but application is limited to a small set of mobile phases and gradient profiles. Here, we expand the toolbox available for retention time predictions by developing a random forest regression model for predicting retention times for four column types and twenty mobile phase systems. MultiConditionRT was built using a dataset containing 78 compounds analyzed with C18 reversed phase, mixed mode, HILIC, and biphenyl columns. In addition, different eluent compositions were used: both methanol and acetonitrile were combined with different aqueous phases with pH from 2.1 to 10.0 (formic acid, acetic acid, trifluoroacetic acid, formate, acetate, bicarbonate, and ammonia). The root mean square error (RMSE) of the test set predictions was 1.55 min for C18 reversed phase, 1.79 min for mixed-mode, 1.93 min for HILIC, and 1.56 min for biphenyl column. Additionally, MultiConditionRT can be applied to different gradient profiles with a general additive model-based calibration approach. The approach of MultiConditionRT was validated externally and internally with 356 and 151 compounds respectively, yielding an RMSE of 2.68 and 2.32 min. 324 and 84 of these compounds were not in the dataset used in the model development.


Asunto(s)
Cromatografía de Fase Inversa , Metanol , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos , Metanol/química
16.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164283

RESUMEN

LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the response of compounds from their structure, which can then be used for quantification in non-targeted analysis. Still, these models rely on tentatively known structures while for most detected compounds, a list of structural candidates, or sometimes only exact mass and retention time are identified. In this study, a quantification approach was developed, where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was compared with two baseline approaches- one assuming equal response factors for all compounds and one using the response factor of the closest eluting standard. The former gave a mean prediction error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine learning-based quantification approach developed here, the corresponding prediction error was a factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing 48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches using structural information.

17.
Water Res ; 204: 117612, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536689

RESUMEN

Surface waters are widely used as drinking water sources and hence their quality needs to be continuously monitored. However, current routine monitoring programs are not comprehensive as they generally cover only a limited number of known pollutants and emerging contaminants. This study presents a risk-based approach combining suspect and non-target screening (NTS) to help extend the coverage of current monitoring schemes. In particular, the coverage of NTS was widened by combining three complementary separations modes: Reverse phase (RP), Hydrophilic interaction liquid chromatography (HILIC) and Mixed-mode chromatography (MMC). Suspect lists used were compiled from databases of relevant substances of very high concern (e.g., SVHCs) and the concentration of detected suspects was evaluated based on ionization efficiency prediction. Results show that suspect candidates can be prioritized based on their potential risk (i.e., hazard and exposure) by combining ionization efficiency-based concentration estimation, in vitro toxicity data or, if not available, structural alerts and QSAR.based toxicity predictions. The acquired information shows that NTS analyses have the potential to complement target analyses, allowing to update and adapt current monitoring programs, ultimately leading to improved monitoring of drinking water sources.


Asunto(s)
Contaminantes Ambientales , Cromatografía Liquida , Bases de Datos Factuales , Agua
18.
Rapid Commun Mass Spectrom ; 35(21): e9178, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34355441

RESUMEN

RATIONALE: The first comprehensive quantitative scale of the efficiency of electrospray ionization (ESI) in the positive mode by monoprotonation, containing 62 compounds, was published in 2010. Several trends were found between the compound structure and ionization efficiency (IE) but, possibly because of the limited diversity of the compounds, some questions remained. This work undertakes to align the new data with the originally published IE scale and carry out statistical analysis of the resulting more extensive and diverse data set to derive more grounded relationships and offer a possibility of predicting logIE values. METHODS: Recently, several new IE studies with numerous compounds have been conducted. In several of them, more detailed investigations of the influence of compound structure, solvent properties, or instrument settings have been conducted. IE data from these studies and results from this work were combined, and the multilinear regression method was applied to relate IE to various compound parameters. RESULTS: The most comprehensive IE scale available, containing 334 compounds of highly diverse chemical nature and spanning 6 orders of magnitude of IE, has been compiled. Several useful trends were revealed. CONCLUSIONS: The ESI ionization efficiency of a compound by protonation is mainly affected by three factors: basicity (expressed by pKaH in water), molecular size (expressed by molar volume or surface area), and hydrophobicity of the ion (expressed by charge delocalization in the ion or its partition coefficient between a water-acetonitrile mixture and hexane). The presented models can be used for tentative prediction of logIE of new compounds (under the used conditions) from parameters that can be computed using commercially available software. The root mean square error of prediction is in the range of 0.7-0.8 log units.

19.
Molecules ; 26(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207787

RESUMEN

Non-targeted screening (NTS) with reversed phase liquid chromatography electrospray ionization high resolution mass spectrometry (LC/ESI/HRMS) is increasingly employed as an alternative to targeted analysis; however, it is not possible to quantify all compounds found in a sample with analytical standards. As an alternative, semi-quantification strategies are, or at least should be, used to estimate the concentrations of the unknown compounds before final decision making. All steps in the analytical chain, from sample preparation to ionization conditions and data processing can influence the signals obtained, and thus the estimated concentrations. Therefore, each step needs to be considered carefully. Generally, less is more when it comes to choosing sample preparation as well as chromatographic and ionization conditions in NTS. By combining the positive and negative ionization mode, the performance of NTS can be improved, since different compounds ionize better in one or the other mode. Furthermore, NTS gives opportunities for retrospective analysis. In this tutorial, strategies for semi-quantification are described, sources potentially decreasing the signals are identified and possibilities to improve NTS are discussed. Additionally, examples of retrospective analysis are presented. Finally, we present a checklist for carrying out semi-quantitative NTS.

20.
Anal Chim Acta ; 1152: 238117, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648645

RESUMEN

The variation of ionization efficiency for different compounds has puzzled researchers since the invention of the electrospray mass spectrometry (ESI/MS). Ionization depends on the properties of the compound, eluent, matrix, and instrument. Despite significant research, some aspects have remained unclear. For example, research groups have reached contradicting conclusions regarding the ionization processes. One of the best-known is the significance of the logP value for predicting the ionization efficiency. In this tutorial review, we analyse the methodology used for ionization efficiency measurements as well as the most important trends observed in the data. Additionally, we give suggestions regarding the measurement methodology and modelling strategies to yield meaningful and consistent ionization efficiency data. Finally, we have collected a wide range of ionization efficiency values from the literature and evaluated the consistency of these data. We also make this collection available for everyone for downloading as well as for uploading additional and new ionization efficiency data. We hope this GitHub based ionization efficiency repository will allow a joined community effort to collect and unify the current knowledge about the ionization processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...