Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
FEBS Lett ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152526

RESUMEN

Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-ß1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.

2.
J Neurosurg ; : 1-12, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968617

RESUMEN

OBJECTIVE: Meningiomas are one of the most frequently occurring brain tumors and can be curatively treated with gross-total resection. A subtotal resection increases the chances of recurrence. The intraoperative identification of invisible tumor remnants by using a fluorescent tracer targeting an upregulated biomarker could help to optimize meningioma resection. This is called molecular fluorescence-guided surgery (MFGS). Vascular endothelial growth factor α (VEGFα) has been identified as a suitable meningioma biomarker and can be targeted with bevacizumab-IRDye800CW. METHODS: The aim of this prospective phase I trial was to determine the safety and feasibility of bevacizumab-IRDye800CW for MFGS for intracranial meningiomas by administering 4.5, 10, or 25 mg of the tracer 2-4 days prior to surgery. Fluorescence was verified during the operation with the standard neurosurgical microscope, and tissue specimens were postoperatively analyzed with fluorescence imaging systems (Pearl and Odyssey CLx) and spectroscopy to determine the optimal dose. Uptake was compared in several tissue types and correlated with VEGFα expression. RESULTS: No adverse events related to the use of bevacizumab-IRDye800CW occurred. After two interim analyses, 10 mg was the optimal dose based on ex vivo tumor-to-background ratio. Although the standard intraoperative imaging revealed no fluorescence, postoperative analyses with tailored imaging systems showed high fluorescence uptake in tumor compared with unaffected dura mater and brain. Additionally, tumor invasion of the dura mater (dural tail) and invasion of bone could be distinguished using fluorescence imaging. Fluorescence intensity showed a good correlation with VEGFα expression. CONCLUSIONS: Bevacizumab-IRDye800CW can be safely used in patients with meningioma; 10 mg bevacizumab-IRDye800CW provided an adequate tumor-to-background ratio. Adjustments of the currently available neurosurgical microscopes are needed to achieve visualization of targeted IRDye800CW intraoperatively. A phase II/III trial is needed to methodically investigate the benefit of MFGS with bevacizumab-IRDye800CW for meningioma surgery in a larger cohort of patients.

3.
Cancer Drug Resist ; 7: 12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835345

RESUMEN

Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.

6.
Adv Mater ; 35(28): e2210769, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36916861

RESUMEN

3D bioprinting is a powerful fabrication technique in biomedical engineering, which is currently limited by the number of available materials that meet all physicochemical and cytocompatibility requirements for biomaterial inks. Inspired by the key role of coacervation in the extrusion and spinning of many natural materials, hyaluronic acid-chitosan complex coacervates are proposed here as tunable biomaterial inks. Complex coacervates are obtained through an associative liquid-liquid phase separation driven by electrostatic attraction between oppositely charged macromolecules. They offer bioactive properties and facile modulation of their mechanical properties through mild physicochemical changes in the environment, making them attractive for 3D bioprinting. Fine-tuning the salt concentration, pH, and molecular weight of the constituent polymers results in biomaterial inks that are printable in air and water. The biomaterial ink, initially a viscoelastic fluid, transitions into a viscoelastic solid upon printing due to dehydration (for printing in air) or due to a change in pH and ionic composition (for printing in solution). Consequently, scaffolds printed using the complex coacervate inks are stable without the need for post-printing processing. Fabricated cell culture scaffolds are cytocompatible and show long-term topological stability. These results pave the way to a new class of easy-to-handle tunable biomaterials for biofabrication.


Asunto(s)
Bioimpresión , Tinta , Bioimpresión/métodos , Impresión Tridimensional , Reología , Materiales Biocompatibles/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Hidrogeles/química
7.
J Neurosurg ; 138(5): 1263-1272, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308486

RESUMEN

OBJECTIVE: Meningiomas are frequently occurring, often benign intracranial tumors. Molecular fluorescence can be used to intraoperatively identify residual meningioma tissue and optimize safe resection; however, currently no clinically approved agent is available for this specific tumor type. In meningiomas, vascular endothelial growth factor α (VEGFα) is upregulated, and this biomarker could be targeted with bevacizumab-IRDye800CW, a fluorescent agent that is already clinically applied for the resection of other tumors and neoplasms. Here, the authors investigated the feasibility of using bevacizumab-IRDye800CW to target VEGFα in a CH-157MN xenografted mouse model. METHODS: Five mice with CH-157MN xenografts with volumes of 500 mm3 were administered intravenous bevacizumab-IRDye800CW. Mice were imaged in vivo at 24 hours, 48 hours, and 72 hours after injection with the FMT2500 fluorescence imaging system. Biodistribution was determined ex vivo using the Pearl fluorescent imager at 72 hours after injection. To mimic a clinical scenario, 2 animals underwent postmortem xenograft resection using both white-light and fluorescence guidance. Lastly, fresh and frozen human meningioma specimens were incubated ex vivo with bevacizumab-IRDye800CW, stained with anti-VEGFα, and microscopically examined. RESULTS: In vivo, tumors fluoresced at all time points after tracer administration and background fluorescence decreased with time. Ex vivo analyses of tracer biodistribution showed the highest fluorescence in resected tumor tissue. Brain, skull, and muscle tissue showed very low fluorescence. Microscopically, fluorescence was observed in the cytoplasm and was correlated with VEGFα expression patterns. During postmortem surgery, both the tumor bulk and a small tumor remnant were detected. Bevacizumab-IRDye800CW bound specifically to all tested human meningioma samples, as indicated by a high fluorescent signal in the tumor bulk compared with the surrounding healthy dura mater. CONCLUSIONS: Bevacizumab-IRDye800CW showed meningioma specificity, as illustrated by high VEGFα-mediated uptake in the meningioma xenograft mouse model. Small tumor lesions were detected using fluorescence guidance. Thus, the next step will be to assess the feasibility of using already available clinical grade bevacizumab-IRDye800CW to optimize meningioma resection in a human trial.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Animales , Ratones , Bevacizumab , Meningioma/cirugía , Factor A de Crecimiento Endotelial Vascular , Estudios de Factibilidad , Distribución Tisular , Colorantes , Neoplasias Meníngeas/cirugía
8.
Cell Mol Life Sci ; 79(8): 398, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790583

RESUMEN

Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Neoplasias Encefálicas/patología , Antígeno CD146/genética , Antígeno CD146/metabolismo , Glioblastoma/patología , Glioma/patología , Pez Cebra/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742966

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults. In addition to genetic causes, the tumor microenvironment (TME), including stiffening of the extracellular matrix (ECM), is a main driver of GBM progression. Mechano-transduction and the unfolded protein response (UPR) are essential for tumor-cell adaptation to harsh TME conditions. Here, we studied the effect of a variable stiff ECM on the morphology and malignant properties of GBM stem cells (GSCs) and, moreover, examined the possible involvement of the UPR sensor PERK herein. For this, stiffness-tunable human blood plasma (HBP)/alginate hydrogels were generated to mimic ECM stiffening. GSCs showed stiffness-dependent adaptation characterized by elongated morphology, increased proliferation, and motility which was accompanied by F-Actin cytoskeletal remodeling. Interestingly, in PERK-deficient GSCs, stiffness adaptation was severely impaired, which was evidenced by low F-Actin levels, the absence of F-Actin remodeling, and decreased cell proliferation and migration. This impairment could be linked with Filamin-A (FLN-A) expression, a known interactor of PERK, which was strongly reduced in PERK-deficient GSCs. In conclusion, we identified a novel PERK/FLNA/F-Actin mechano-adaptive mechanism and found a new function for PERK in the cellular adaptation to ECM stiffening.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Actinas/metabolismo , Adulto , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/metabolismo , Humanos , Microambiente Tumoral , Respuesta de Proteína Desplegada
10.
Pharmaceutics ; 14(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631616

RESUMEN

The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell-cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.

11.
Neuro Oncol ; 24(4): 541-553, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543427

RESUMEN

BACKGROUND: Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation. METHODS: Bioinformatics analysis of TCGA was performed to analyze differences between GBM and oligodendroglioma. Patient-derived GBM stem cell lines were used to investigate MT formation under transforming growth factor-beta (TGF-ß) stimulation and inhibition in vitro and in vivo in an orthotopic xenograft model. RNA sequencing and proteomics were performed to detect commonalities and differences between GBM cell lines stimulated with TGF-ß. RESULTS: Analysis of TCGA data showed that the TGF-ß pathway is highly activated in GBMs compared to oligodendroglial tumors. We demonstrated that TGF-ß1 stimulation of GBM cell lines promotes enhanced MT formation and communication via calcium signaling. Inhibition of the TGF-ß pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-ß, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-ß stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. CONCLUSION: TGF-ß and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT-driven invasion/resistance network.


Asunto(s)
Glioblastoma , Glioma , Oligodendroglioma , Glioblastoma/patología , Humanos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
Curr Opin Pharmacol ; 61: 91-97, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656940

RESUMEN

Glioblastoma (GBM) is the most prevalent form of primary malignant brain tumor in adults and remains almost invariably lethal owing to its aggressive and invasive nature. There have only been marginal improvements in its bleak survival rate of 12-15 months over the last four decades. The lack of preclinical models that efficiently recapitulate tumor biology and the tumor microenvironment is also in part responsible for the slow phase of translational GBM research. Emerging three-dimensional (3D) organoids and cell culture systems offer new and innovative possibilities for GBM modelling. These 3D models find their application to engineer the disease, screen drugs, establishing live biobank, and explore personalized therapy. Furthermore, these models can also be genetically modified by using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which would allow one to study the specific role of key genes associated with gliomagenesis. Establishment of a coculture system with GBM cells to understand its invasive behavior is yet another major application of this model. Despite these merits, the organoid models also have certain limitations, including the absence of immune responses and vascular systems. In recent years, major progress has been made in the development and refinement of 3D models of GBM. In this review, we intend to highlight these recent advances and the potential future implications of this rapidly evolving field, which should facilitate a better understanding of GBM biology.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Organoides , Microambiente Tumoral
13.
Biochem Pharmacol ; 192: 114737, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411568

RESUMEN

The unfolded protein response (UPR) is an adaptive mechanism that regulates protein and cellular homeostasis. Three endoplasmic reticulum (ER) membrane localized stress sensors, IRE1, PERK and ATF6, coordinate the UPR in order to maintain ER proteostasis and cell survival, or induce cell death when homeostasis cannot be restored. However, recent studies have identified alternative functions for the UPR in developmental biology processes and cell fate decisions under both normal and cancerous conditions. In cancer, increasing evidence points towards the involvement of the three UPR sensors in oncogenic reprogramming and the regulation of tumor cells endowed with stem cell properties, named cancer stem cells (CSCs), that are considered to be the most malignant cells in tumors. Here we review the reported roles and underlying molecular mechanisms of the three UPR sensors in regulating stemness and differentiation, particularly in solid tumor cells, processes that have a major impact on tumor aggressiveness. Mainly PERK and IRE1 branches of the UPR were found to regulate CSCs and tumor development and examples are provided for breast cancer, colon cancer and aggressive brain tumors, glioblastoma. Although the underlying mechanisms and interactions between the different UPR branches in regulating stemness in cancer need to be further elucidated, we propose that PERK and IRE1 targeted therapy could inhibit self-renewal of CSCs or induce differentiation that is predicted to have therapeutic benefit. For this, more specific UPR modulators need to be developed with favorable pharmacological properties that together with patient stratification will allow optimal evaluation in clinical studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Diferenciación Celular/fisiología , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Invasividad Neoplásica/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071790

RESUMEN

Lung cancer is still one of the deadliest cancers, with over two million incidences annually. Prevention is regarded as the most efficient way to reduce both the incidence and death figures. Nevertheless, treatment should still be improved, particularly in addressing therapeutic resistance due to cancer stem cells-the assumed drivers of tumor initiation and progression. Phytochemicals in plant-based diets are thought to contribute substantially to lung cancer prevention and may be efficacious for targeting lung cancer stem cells. In this review, we collect recent literature on lung homeostasis, carcinogenesis, and phytochemicals studied in lung cancers. We provide a comprehensive overview of how normal lung tissue operates and relate it with lung carcinogenesis to redefine better targets for lung cancer stem cells. Nine well-studied phytochemical compounds, namely curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, luteolin, sulforaphane, berberine, genistein, and capsaicin, are discussed in terms of their chemopreventive and anticancer mechanisms in lung cancer and potential use in the clinic. How the use of phytochemicals can be improved by structural manipulations, targeted delivery, concentration adjustments, and combinatorial treatments is also highlighted. We propose that lung carcinomas should be treated differently based on their respective cellular origins. Targeting quiescence-inducing, inflammation-dampening, or reactive oxygen species-balancing pathways appears particularly interesting.


Asunto(s)
Carcinogénesis , Susceptibilidad a Enfermedades , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Biomarcadores , Biomarcadores de Tumor , Quimioprevención , Manejo de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Predisposición Genética a la Enfermedad , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Clasificación del Tumor , Estadificación de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Transducción de Señal
16.
EJNMMI Res ; 11(1): 47, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33970376

RESUMEN

BACKGROUND: There is a growing body of nuclear contrast agents that are repurposed for fluorescence-guided surgery. New contrast agents are obtained by substituting the radioactive tag with, or adding a fluorescent cyanine to the molecular structure of antibodies or peptides. This enables intra-operative fluorescent detection of cancerous tissue, leading to more complete tumor resection. However, these fluorescent cyanines can have a remarkable influence on pharmacokinetics and tumor uptake, especially when labeled to smaller targeting vectors such as peptides. Here we demonstrate the effect of cyanine-mediated dead cell-binding of Ac-Lys0(IRDye800CW)-Tyr3-octreotate (800CW-TATE) and how this can be used as an advantage for fluorescence-guided surgery. RESULTS: Binding of 800CW-TATE could be blocked with DOTA0-Tyr3-octreotate (DOTA-TATE) on cultured SSTR2-positive U2OS cells and was absent in SSTR2 negative U2OS cells. However, strong binding was observed to dead cells, which could not be blocked with DOTA-TATE and was also present in dead SSTR2 negative cells. No SSTR2-mediated binding was observed in frozen tumor sections, possibly due to disruption of the cells in the process of sectioning the tissue before exposure to the contrast agent. DOTA-TATE blocking resulted in an incomplete reduction of 61.5 ± 5.8% fluorescence uptake by NCI-H69-tumors in mice. Near-infrared imaging and dead cell staining on paraffin sections from resected tumors revealed that fluorescence uptake persisted in necrotic regions upon blocking with DOTA-TATE. CONCLUSION: This study shows that labeling peptides with cyanines can result in dead cell binding. This does not hamper the ultimate purpose of fluorescence-guided surgery, as necrotic tissue appears in most solid tumors. Hence, the necrosis binding can increase the overall tumor uptake. Moreover, necrotic tissue should be removed as much as possible: it cannot be salvaged, causes inflammation, and is tumorigenic. However, when performing binding experiments to cells with disrupted membrane integrity, which is routinely done with nuclear probes, this dead cell-binding can resemble non-specific binding. This study will benefit the development of fluorescent contrast agents.

17.
J Neurooncol ; 153(2): 211-222, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33768405

RESUMEN

PURPOSE: Meningioma recurrence rates can be reduced by optimizing surgical resection with the use of intraoperative molecular fluorescence guided surgery (MFGS). We evaluated the potential of the fluorescent tracer 800CW-TATE for MFGS using in vitro and in vivo models. It targets somatostatin receptor subtype 2 (SSTR2), which is overexpressed in all meningiomas. METHODS: Binding affinity of 800CW-TATE was evaluated using [177Lu] Lu-DOTA-Tyr3-octreotate displacement assays. Tumor uptake was determined by injecting 800CW-TATE in (SSTR2-positive) NCI-H69 or (SSTR2-negative) CH-157MN xenograft bearing mice and FMT2500 imaging. SSTR2-specific binding was measured by comparing tumor uptake in NCI-H69 and CH-157MN xenografts, blocking experiments and non-targeted IRDye800CW-carboxylate binding. Tracer distribution was analyzed ex vivo, and the tumor-to-background ratio (TBR) was calculated. SSTR2 expression was determined by immunohistochemistry (IHC). Lastly, 800CW-TATE was incubated on frozen and fresh meningioma specimens and analyzed by microscopy. RESULTS: 800CW-TATE binding affinity assays showed an IC50 value of 72 nM. NCI-H69 xenografted mice showed a TBR of 21.1. 800CW-TATE detection was reduced after co-administration of non-fluorescent DOTA-Tyr3-octreotate or administration of IRDye800CW. CH-157MN had no tumor specific tracer staining due to absence of SSTR2 expression, thereby serving as a negative control. The tracer bound specifically to SSTR2-positive meningioma tissues representing all WHO grades. CONCLUSION: 800CW-TATE demonstrated sufficient binding affinity, specific SSTR2-mediated tumor uptake, a favorable biodistribution, and high TBR. These features make this tracer very promising for use in MFGS and could potentially aid in safer and a more complete meningioma resection, especially in high-grade meningiomas or those at complex anatomical localizations.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Animales , Fluorescencia , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Ratones , Tomografía de Emisión de Positrones , Distribución Tisular
18.
Lung Cancer ; 154: 13-22, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607458

RESUMEN

OBJECTIVES: Cancer stem cells (CSCs) have been implicated in disease progression of aggressive cancers including small cell lung carcinoma (SCLC). Here, we have examined the possible contribution of CSCs to SCLC progression and aggressiveness. MATERIALS AND METHODS: GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity. RESULTS: Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody. CONCLUSION: The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Receptores de Hialuranos , Neoplasias Pulmonares/diagnóstico , Células Madre Neoplásicas , Carcinoma Pulmonar de Células Pequeñas/diagnóstico
19.
Biochem Pharmacol ; 171: 113714, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31738894

RESUMEN

Brain tumours are among the deadliest tumours being highly resistant to currently available therapies. The proliferative behaviour of gliomas is strongly influenced by ion channel activity. Small-conductance calcium-activated potassium (SK/KCa) channels are a family of ion channels that are associated with cell proliferation and cell survival. A combined treatment of classical anti-cancer agents and pharmacological SK channel modulators has not been addressed yet. We used the gold-derivative auranofin to induce cancer cell death by targeting thioredoxin reductases in combination with CyPPA to activate SK channels in neuro- and glioblastoma cells. Combined treatment with auranofin and CyPPA induced massive mitochondrial damage and potentiated auranofin-induced toxicity in neuroblastoma cells in vitro. In particular, mitochondrial integrity, respiration and associated energy generation were impaired. These findings were recapitulated in patient-derived glioblastoma neurospheres yet not observed in non-cancerous HT22 cells. Taken together, integrating auranofin and SK channel openers to affect mitochondrial health was identified as a promising strategy to increase the effectiveness of anti-cancer agents and potentially overcome resistance.


Asunto(s)
Auranofina/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neuroblastoma/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Auranofina/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Esferoides Celulares/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo
20.
Cell Death Dis ; 10(10): 690, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534165

RESUMEN

Patients with aggressive brain tumors, named glioblastoma multiforme (GBM), have a poor prognoses. Here we explored if the ER stress/unfolded protein response (UPR) is involved in the pathophysiology of GBM and may provide novel therapeutic targets. Immunohistochemical analyses of a tissue microarray containing primary GBM specimens showed strong variability in expression of the UPR markers GRP78/BiP, XBP1, and ATF4. Interestingly, high ATF4 expression was associated with poor overall survival suggesting involvement of PERK signaling in GBM progression. In vitro experiments using patient-derived neurospheres, enriched for GBM stem cells (GSCs), showed high sensitivity for the ER stressor thapsigargin (Tg) mainly via PERK signaling. In contrast, neurospheres-derived differentiated GBM cells were less sensitive likely due to lower UPR activity as indicated by comparative transcriptional profiling. Tg and Tunicamycin strongly reduced neurosphere forming ability of GSCs that was linked with potent PERK-dependent downregulation of SOX2 protein. Interestingly, SOX2 downregulation occurred directly via PERK, not requiring downstream activation of the PERK-UPR pathway. Moreover, PERK inactivation resulted in aberrant serum-induced differentiation of GBM neurospheres accompanied by persistent SOX2 expression, delayed upregulation of GFAP and reduced cell adherence. In conclusion, we provide evidence that PERK signaling contributes to the prognoses of primary GBM patients and identified PERK as a novel regulator of SOX2 expression and GSC differentiation. The role of PERK appeared to be pleiotropic involving UPR-dependent, as well as novel identified noncanonical mechanisms regulating SOX2. ER stress and PERK modulation appear to provide promising therapeutic targets for therapy in GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Estrés del Retículo Endoplásmico , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/metabolismo , eIF-2 Quinasa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Diferenciación Celular/fisiología , Chaperón BiP del Retículo Endoplásmico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/genética , Transducción de Señal , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA