Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398985

RESUMEN

We report on theoretical and experimental investigation of parametric amplification of acoustically excited vibrations in micromachined single-crystal silicon cantilevers electrostatically actuated by fringing fields. The device dynamics are analyzed using the Mathieu-Duffing equation, obtained using the Galerkin order reduction technique. Our experimental results show that omnidirectional acoustic pressure used as a noncontact source for linear harmonic driving is a convenient and versatile tool for the mechanical dynamic characterization of unpackaged, nonintegrated microstructures. The fringing field's electrostatic actuation allows for efficient parametric amplification of an acoustic signal. The suggested amplification approach may have applications in a wide variety of micromechanical devices, including resonant sensors, microphones and microphone arrays, and hearing aids. It can be used also for upward frequency tuning.

2.
Chaos ; 33(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100329

RESUMEN

We introduce and study both analytically and numerically a class of microelectromechanical chains aiming to turn them into transmission lines of solitons. Mathematically, their analysis reduces to the study of a spatially one-dimensional nonlinear Klein-Gordon equation with a model dependent onsite nonlinearity induced by the electrical forces. Since the basic solitons appear to be unstable for most of the force regimes, we introduce a stabilizing algorithm and demonstrate that it enables a stable and persisting propagation of solitons. Among other fascinating nonlinear formations induced by the presented models, we mention the "meson": a stable square shaped pulse with sharp fronts that expands with a sonic speed, and "flatons": flat-top solitons of arbitrary width.

3.
Microsyst Nanoeng ; 9: 38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007607

RESUMEN

A novel technology for the precise fabrication of quartz resonators for MEMS applications is introduced. This approach is based on the laser-induced chemical etching of quartz. The main processing steps include femtosecond UV laser treatment of a Cr-Au-coated Z-cut alpha quartz wafer, followed by wet etching. The laser-patterned Cr-Au coating serves as an etch mask and is used to form electrodes for piezoelectric actuation. This fabrication approach does not alter the quartz's crystalline structure or its piezo-electric properties. The formation of defects, which is common in laser micromachined quartz, is prevented by optimized process parameters and by controlling the temporal behavior of the laser-matter interactions. The process does not involve any lithography and allows for high geometric design flexibility. Several configurations of piezoelectrically actuated beam-type resonators were fabricated using relatively mild wet etching conditions, and their functionality was experimentally demonstrated. The devices are distinguished from prior efforts by the reduced surface roughness and improved wall profiles of the fabricated quartz structures.

4.
Ecol Lett ; 22(9): 1483-1492, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31286633

RESUMEN

Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency-specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.


Asunto(s)
Flores/fisiología , Néctar de las Plantas/química , Polinización , Sonido , Azúcares/análisis , Animales , Abejas , Plantas
5.
J Vib Acoust ; 1402018.
Artículo en Inglés | MEDLINE | ID: mdl-31080325

RESUMEN

A large array of elastically coupled micro cantilevers of variable length is studied experimentally and numerically. Full-scale finite element modal analysis is implemented to determine the spectral behavior of the array and to extract a global coupling matrix. A compact reduced order model is used for numerical investigation of the array's dynamic response. Our model results show that at a given excitation frequency within a propagation band, only a finite number of beams respond. Spectral characteristics of individual cantilevers, inertially excited by an external piezoelectric actuator, were measured in vacuum using laser interferometry. The theoretical and experimental results collectively show that the resonant peaks corresponding to individual beams are clearly separated when operating in vacuum at the 3rd harmonic. Distinct resonant peak separation, coupled with the spatially-confined modal response, make higher harmonic operation of tailored, variable-length cantilever arrays well suited for a variety of resonant based sensing applications.

6.
Artículo en Inglés | MEDLINE | ID: mdl-31274970

RESUMEN

We report on a flow velocity measurement technique based on snap-through detection of an electrostatically actuated, bistable micromechanical beam. We show that induced elecro-thermal Joule heating and the convective air cooling change the beam curvature and consequently the critical snap-through voltage (VST ). Using single crystal silicon beams, we demonstrate the snap-through voltage to flow velocity sensitivity of dV ST/du ≈ 0.13 V s m -1 with a power consumption of ≈ 360 µ W. Our experimental results were in accord with the reduced order, coupled, thermo-electro-mechanical model prediction. We anticipate that electrostatically induced snap-through in curved, micromechanical beams will open new directions for the design and implementation of downscaled flow sensors for autonomous applications and environmental sensors.

7.
Phys Rev Lett ; 121(26): 264301, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636140

RESUMEN

We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of coplanar, interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly expanding lengths and thus varying natural frequencies. Within a certain excitation frequency range, the resonators begin oscillating via NPR across the entire array consisting of 200 single-crystal silicon cantilevers. Tunable coupling generated from fringing electrostatic fields provides a mechanism to vary the scope of the NPR. Our experimental results are supported by a reduced-order model that reproduces the leading features of our data including the NPR band. The potential for tailoring the coupled response of suspended mechanical structures using NPR presents new possibilities in mass, force, and energy sensing applications, energy harvesting devices, and optomechanical systems.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31093601

RESUMEN

Curved micromechanical beams are a versatile platform for exploring multistable behavior, with potential applications in mechanical based logic elements and electrical and optical switches. Here we demonstrate bidirectional electrostatic actuation of a bistable, latched, micromechanical beam by the same electrode, which was used for the snap-through switching of the device. The release of the mechanically-latched beam is achieved by pre-loading the structure using a rising voltage applied to the electrode, followed by a sudden decrease of the voltage. This abrupt removal of the loading results in a transient response and dynamic snap-back of the beam.

9.
J Micromech Microeng ; 26(11)2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28008214

RESUMEN

The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to ≈ 560 Hz/V and results with a movable electrode allow motion sensitivity up to ≈ 1.5 Hz/nm. Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains.

10.
Appl Phys Lett ; 108(7)2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27141103

RESUMEN

We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

11.
J Res Natl Inst Stand Technol ; 121: 464-475, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-34434635

RESUMEN

This article introduces in archival form the Nanolithography Toolbox, a platform-independent software package for scripted lithography pattern layout generation. The Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST) developed the Nanolithography Toolbox to help users of the CNST NanoFab design devices with complex curves and aggressive critical dimensions. Using parameterized shapes as building blocks, the Nanolithography Toolbox allows users to rapidly design and layout nanoscale devices of arbitrary complexity through scripting and programming. The Toolbox offers many parameterized shapes, including structure libraries for micro- and nanoelectromechanical systems (MEMS and NEMS) and nanophotonic devices. Furthermore, the Toolbox allows users to precisely define the number of vertices for each shape or create vectorized shapes using Bezier curves. Parameterized control allows users to design smooth curves with complex shapes. The Toolbox is applicable to a broad range of design tasks in the fabrication of microscale and nanoscale devices.

12.
Biosens Bioelectron ; 23(11): 1631-6, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18378440

RESUMEN

A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.


Asunto(s)
Técnicas Biosensibles/instrumentación , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Citometría de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Pruebas de Toxicidad/instrumentación , Transductores , Técnicas Biosensibles/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Citometría de Flujo/métodos , Integración de Sistemas , Pruebas de Toxicidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...