Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0347023, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771133

RESUMEN

Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE: This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.

2.
Genes Genet Syst ; 98(5): 221-237, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37839865

RESUMEN

Since the early phase of the coronavirus disease 2019 (COVID-19) pandemic, a number of research institutes have been sequencing and sharing high-quality severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes to trace the route of infection in Japan. To provide insight into the spread of COVID-19, we developed a web platform named SARS-CoV-2 HaploGraph to visualize the emergence timing and geographical transmission of SARS-CoV-2 haplotypes. Using data from the GISAID EpiCoV database as of June 4, 2022, we created a haplotype naming system by determining the ancestral haplotype for each epidemic wave and showed prefecture- or region-specific haplotypes in each of four waves in Japan. The SARS-CoV-2 HaploGraph allows for interactive tracking of virus evolution and of geographical prevalence of haplotypes, and aids in developing effective public health control strategies during the global pandemic. The code and the data used for this study are publicly available at: https://github.com/ktym/covid19/.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Haplotipos , Japón/epidemiología , Pandemias , Genoma Viral
3.
Antibiotics (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508214

RESUMEN

We conducted a global-scale study to identify H. pylori antimicrobial-resistant genes (ARG), address their global distribution, and understand their effect on the antimicrobial resistance (AMR) phenotypes of the clinical isolates. We identified ARG using several well-known tools against extensive bacterial ARG databases, then analyzed their correlation with clinical antibiogram data from dozens of patients across countries. This revealed that combining multiple tools and databases, followed by manual selection of ARG from the annotation results, produces more conclusive results than using a single tool or database alone. After curation, the results showed that H. pylori has 42 ARG against 11 different antibiotic classes (16 genes related to single antibiotic class resistance and 26 genes related to multidrug resistance). Further analysis revealed that H. pylori naturally harbors ARG in the core genome, called the 'Set of ARG commonly found in the Core Genome of H. pylori (ARG-CORE)', while ARG-ACC-the ARG in the accessory genome-are exclusive to particular strains. In addition, we detected 29 genes of potential efflux pump-related AMR that were mostly categorized as ARG-CORE. The ARG distribution appears to be almost similar either by geographical or H. pylori populations perspective; however, some ARG had a unique distribution since they tend to be found only in a particular region or population. Finally, we demonstrated that the presence of ARG may not directly correlate with the sensitive/resistance phenotype of clinical patient isolates but may influence the minimum inhibitory concentration phenotype.

4.
Methods Mol Biol ; 2632: 215-226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781731

RESUMEN

With the development of nanopore sequencing technology, long reads of DNA sequences can now be determined rapidly from various samples. This protocol introduces the GenomeSync-GSTK system for bacterial species identification in a given sample using nanopore sequencing data of 16S rRNA genes as an example. GenomeSync is a collection of genome sequences designed to provide easy access to genomic data of the species as demanded. GSTK (genome search toolkit) is a set of scripts for managing local homology searches using genomes obtained from the GenomeSync database. Based on this protocol, nanopore sequencing data analyses of metagenomes and amplicons could be efficiently performed. We also noted reanalysis in conjunction with future developments in nanopore sequencing technology and the accumulation of genome sequencing data.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Análisis de Secuencia de ADN/métodos , ARN Ribosómico 16S/genética , Genes de ARNr , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Proc Natl Acad Sci U S A ; 120(1): e2210283120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577074

RESUMEN

Single-cell whole-transcriptome analysis is the gold standard approach to identifying molecularly defined cell phenotypes. However, this approach cannot be used for dynamics measurements such as live-cell imaging. Here, we developed a multifunctional robot, the automated live imaging and cell picking system (ALPS) and used it to perform single-cell RNA sequencing for microscopically observed cells with multiple imaging modes. Using robotically obtained data that linked cell images and the whole transcriptome, we successfully predicted transcriptome-defined cell phenotypes in a noninvasive manner using cell image-based deep learning. This noninvasive approach opens a window to determine the live-cell whole transcriptome in real time. Moreover, this work, which is based on a data-driven approach, is a proof of concept for determining the transcriptome-defined phenotypes (i.e., not relying on specific genes) of any cell from cell images using a model trained on linked datasets.


Asunto(s)
Aprendizaje Profundo , Procedimientos Quirúrgicos Robotizados , Robótica , Transcriptoma , Procesamiento de Imagen Asistido por Computador/métodos , Perfilación de la Expresión Génica , Fenotipo
6.
Sci Immunol ; 7(76): eabj8760, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36269840

RESUMEN

Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.


Asunto(s)
Células T Asesinas Naturales , Ratones , Humanos , Animales , Células T Asesinas Naturales/metabolismo , Células T Asesinas Naturales/patología , Interleucina-15 , Antivirales , Granzimas , Receptores de Células Asesinas Naturales , Receptores de Quimiocina/metabolismo , Lípidos
7.
Patterns (N Y) ; 3(9): 100562, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-35818472

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome data are essential for epidemiology, vaccine development, and tracking emerging variants. Millions of SARS-CoV-2 genomes have been sequenced during the pandemic. However, downloading SARS-CoV-2 genomes from databases is slow and unreliable, largely due to suboptimal choice of compression method. We evaluated the available compressors and found that Nucleotide Archival Format (NAF) would provide a drastic improvement compared with current methods. For Global Initiative on Sharing Avian Flu Data's (GISAID) pre-compressed datasets, NAF would increase efficiency 52.2 times for gzip-compressed data and 3.7 times for xz-compressed data. For DNA DataBank of Japan (DDBJ), NAF would improve throughput 40 times for gzip-compressed data. For GenBank and European Nucleotide Archive (ENA), NAF would accelerate data distribution by a factor of 29.3 times compared with uncompressed FASTA. This article provides a tutorial for installing and using NAF. Offering a NAF download option in sequence databases would provide a significant saving of time, bandwidth, and disk space and accelerate biological and medical research worldwide.

8.
iScience ; 25(7): 104477, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35720267

RESUMEN

A virulence bacterium, Helicobacter pylori, evolved parallel to its host human, therefore, can work as a marker for tracing the human migration. We found H. pylori strains indigenous in the southernmost islands of Japanese Archipelago, Okinawa, and defined them as hspOkinawa and hpRyukyu. Genome data of the strains revealed that hspOkinawa diverged from other East Asian strains about 20,000 years ago, and that hpRyukyu diverged about 45,000 years ago. The closest strains of hpRyukyu were found from Afghanistan, Punjab, and Nepal, which suggest this strain originated in the central Asia and traveled across the Eurasian continent during Paleolithic era. The divergence date of hpRyukyu corresponds with human fossil records in Okinawa. Although it is controversial from human DNA analyses whether descendants of the Paleolithic migrants remain in the modern Japanese population, this study reveals that the bacterium of Paleolithic origin remains in the stomachs of current Japanese.

9.
BMC Med Genomics ; 15(1): 68, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337329

RESUMEN

BACKGROUND: It has been suggested that the local microbiota in the reproductive organs is relevant to women's health and may also affect pregnancy outcomes. Analysis of partial 16S ribosomal RNA (rRNA) gene sequences generated by short-read sequencers has been used to identify vaginal and endometrial microbiota, but it requires a long time to obtain the results, making it unsuitable for rapid bacterial identification from a small specimen amount in a clinical context. METHODS: We developed a simple workflow using the nanopore sequencer MinION that allows high-resolution and rapid differentiation of vaginal microbiota. Vaginal samples collected from 18 participants were subjected to DNA extraction and full-length 16S rRNA gene sequencing with MinION. RESULTS: The principal coordinate analysis showed no differences in the bacterial compositions regardless of the sample collection method. The analysis of vaginal microbiota could be completed with a total analysis time of approximately four hours, allowing same-day results. Taxonomic profiling by MinION sequencing revealed relatively low diversity of the vaginal bacterial community, identifying the prevailing Lactobacillus species and several causative agents of bacterial vaginosis. CONCLUSIONS: Full-length 16S rRNA gene sequencing analysis with MinION provides a rapid means for identifying vaginal bacteria with higher resolution. Species-level profiling of human vaginal microbiota by MinION sequencing can allow the analysis of associations with conditions such as genital infections, endometritis, and threatened miscarriage.


Asunto(s)
Microbiota , Secuenciación de Nanoporos , Bacterias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
10.
Infect Dis (Lond) ; 53(6): 450-459, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33689538

RESUMEN

BACKGROUND: Although a microbiological diagnosis of pleural infection is clinically important, it is often complicated by prior antibiotic treatment and/or difficulties with culturing some bacterial species. Therefore, we aimed to identify probable causative bacteria in pleural empyema/parapneumonic effusions by combining 16S ribosomal RNA (rRNA) gene amplification and next-generation sequencing (NGS). METHODS: Pleural fluids were collected from 19 patients with infectious effusions and nine patients with non-infectious malignant effusions. We analysed DNA extracted from the pleural fluid supernatant by NGS using the Genome Search Toolkit and GenomeSync database, either directly or after PCR amplification of the 16S rRNA gene. Infectious and non-infectious effusions were distinguished by semi-quantitative PCR of the 16S rRNA gene. RESULTS: Only 8 (42%) effusions were culture-positive, however, NGS of the 16S rRNA gene amplicon identified 14 anaerobes and 7 aerobes/facultative anaerobes in all patients, including Streptococcus sp. (n = 6), Fusobacterium sp. (n = 5), Porphyromonas sp. (n = 5), and Prevotella sp. (n = 4), accounting for >10% of the total genomes. The culture and NGS results were discordant for 3 out of 8 patients, all of whom had previously been treated with antibiotics. Total (2ΔCT value in semi-quantitative PCR of the 16S rRNA gene) and specific (total bacterial load multiplied by the proportion of primary bacteria in NGS) bacterial loads could efficiently distinguish empyema/parapneumonic effusion from non-infectious effusion. CONCLUSION: Combining NGS with semi-quantitative PCR can facilitate the diagnosis of pleural empyema/parapneumonic effusion and its causal bacteria.


Asunto(s)
Empiema Pleural , Derrame Pleural , Bacterias , Empiema Pleural/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Ribosómico 16S/genética
11.
Sci Rep ; 11(1): 3436, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564026

RESUMEN

Spread of drug-resistant bacteria is a serious problem worldwide. We thus designed a new sequence-based protocol that can quickly identify bacterial compositions of clinical samples and their drug-resistance profiles simultaneously. Here we utilized propidium monoazide (PMA) that prohibits DNA amplifications from dead bacteria, and subjected the original and antibiotics-treated samples to 16S rRNA metagenome sequencing. We tested our protocol on bacterial mixtures, and observed that sequencing reads derived from drug-resistant bacteria were significantly increased compared with those from drug-sensitive bacteria when samples were treated by antibiotics. Our protocol is scalable and will be useful for quickly profiling drug-resistant bacteria.


Asunto(s)
Bacterias/genética , Colorantes/química , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Nanoporos , Análisis de Secuencia de ADN , Metagenoma , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
12.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33416463

RESUMEN

The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.


Asunto(s)
Culicidae/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Aedes/virología , Animales , Bolivia , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Flavivirus/clasificación , Flavivirus/fisiología , Genoma Viral , Mosquitos Vectores/virología , Filogenia , Poliproteínas/química , Poliproteínas/genética , ARN Viral/genética , Análisis de Secuencia de ARN , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Replicación Viral , Secuenciación Completa del Genoma
13.
BMC Microbiol ; 21(1): 35, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499799

RESUMEN

BACKGROUND: Species-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples. RESULTS: We modified our existing protocol for full-length 16S rRNA gene amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S rRNA gene amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition. CONCLUSIONS: Our present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Microbioma Gastrointestinal/genética , Secuenciación de Nanoporos/métodos , ARN Ribosómico 16S/genética , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación de Nanoporos/instrumentación
14.
Fam Cancer ; 20(1): 49-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32451744

RESUMEN

A recent study suggested a role of CHEK2 loss-of-function germ-line pathogenic variants in the predisposition to testicular cancer (TC) (AlDubayan et al. JAMA Oncol 5:514-522, 2019). We attempted to validate this finding relying on the high population frequency of recurrent CHEK2 pathogenic variants in Slavic populations. CHEK2 pathogenic alleles (c.1100delC (p.Thr367Metfs); del5395 [del ex9-10]; IVS2 + 1G > A [c.444 + 1G > A]) were detected in 7/280 (2.5%) TC patients vs. 3/424 (0.7%) healthy men and 6/1007 (0.6%) healthy women [OR 4.0 (95% CI 1.5-11), p = 0.009 for pooled control groups]. Somatic CHEK2 loss-of-heterozygosity (LOH) was detected in 4 out of 6 tumors available for analysis; strikingly all these instances of LOH involved inactivation of the wild-type allele. The CHEK2 c.470T > C (p.Ile157Thr) variant was detected in 21/280 (7.5%) affected vs. 22/424 (5.2%) non-affected men [OR 1.5 (95% CI 0.8-2.7), p = 0.3]. Somatic CHEK2 LOH was revealed only in 6 out of 21 tumors obtained from CHEK2 c.470T > C (p.Ile157Thr) carriers, with the C-allele lost in two cases and T-allele deleted in four tumors. The results of comparison of allele frequencies in TC patients versus population controls coupled with the data on CHEK2 LOH status in tumor tissues support the association of CHEK2 pathogenic variants with TC risk.


Asunto(s)
Alelos , Quinasa de Punto de Control 2/genética , Eliminación de Gen , Mutación de Línea Germinal/genética , Pérdida de Heterocigocidad , Neoplasias Testiculares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Embrionario/genética , Niño , Preescolar , Tumor del Seno Endodérmico/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Federación de Rusia , Seminoma/genética , Teratoma/genética , Adulto Joven
15.
Mitochondrial DNA B Resour ; 5(3): 3810-3811, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33367109

RESUMEN

The complete mitochondrial (mt) genomes of five subspecies of the Eurasian (Common) magpie Pica pica were determined for the first time. Lengths of the circular genomes comprise 13 protein-coding genes, two rRNA genes (for 12S rRNA and 16S rRNA), 22 tRNA genes, and the non-coding control region (CR). Gene content and lengths of the genomes (16,936-16,945 bp) are similar to typical vertebrate mt genomes. The subspecies studied differs by several single substitutions and indels, especially in the CR. The phylogenetic tree based on complete mt genomes shows a deep divergence of the two groups of subspecies which supports the proposed division into two distinct species: P. pica and P. serica.

16.
Mob DNA ; 11: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963593

RESUMEN

BACKGROUND: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of mammalian germline cells. A large proportion of ERVs lose their open reading frames (ORFs), while others retain them and become exapted by the host species. However, it remains unclear what proportion of ERVs possess ORFs (ERV-ORFs), become transcribed, and serve as candidates for co-opted genes. RESULTS: We investigated characteristics of 176,401 ERV-ORFs containing retroviral-like protein domains (gag, pro, pol, and env) in 19 mammalian genomes. The fractions of ERVs possessing ORFs were overall small (~ 0.15%) although they varied depending on domain types as well as species. The observed divergence of ERV-ORF from their consensus sequences showed bimodal distributions, suggesting that a large proportion of ERV-ORFs either recently, or anciently, inserted themselves into mammalian genomes. Alternatively, very few ERVs lacking ORFs were found to exhibit similar divergence patterns. To identify candidates for ERV-derived genes, we estimated the ratio of non-synonymous to synonymous substitution rates (dN/dS) for ERV-ORFs in human and non-human mammalian pairs, and found that approximately 42% of the ERV-ORFs showed dN/dS < 1. Further, using functional genomics data including transcriptome sequencing, we determined that approximately 9.7% of these selected ERV-ORFs exhibited transcriptional potential. CONCLUSIONS: These results suggest that purifying selection operates on a certain portion of ERV-ORFs, some of which may correspond to uncharacterized functional genes hidden within mammalian genomes. Together, our analyses suggest that more ERV-ORFs may be co-opted in a host-species specific manner than we currently know, which are likely to have contributed to mammalian evolution and diversification.

17.
Gigascience ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627830

RESUMEN

BACKGROUND: Nearly all molecular sequence databases currently use gzip for data compression. Ongoing rapid accumulation of stored data calls for a more efficient compression tool. Although numerous compressors exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive analysis of their comparative advantages for sequence compression was available. FINDINGS: We systematically benchmarked 430 settings of 48 compressors (including 29 specialized sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of DNA, RNA, and protein sequences. Each compressor was evaluated on 17 performance measures, including compression strength, as well as time and memory required for compression and decompression. We used 27 test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-compression-benchmark/), which allows custom visualizations to be built for selected subsets of benchmark results. CONCLUSION: We found that modern compressors offer a large improvement in compactness and speed compared to gzip. Our benchmark allows compressors and their settings to be compared using a variety of performance measures, offering the opportunity to select the optimal compressor on the basis of the data type and usage scenario specific to a particular application.


Asunto(s)
Biología Computacional/métodos , Compresión de Datos/métodos , Bases de Datos de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Algoritmos , Genómica/métodos , Humanos , Modelos Teóricos , Mutación , Neoplasias/genética , Programas Informáticos
18.
Drug Discov Ther ; 14(1): 42-49, 2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32101813

RESUMEN

Acute urinary tract infection (UTI) is a highly common clinical condition. Although bacterial culture is the gold standard diagnostic test, false negative results may be possible, leading to the pathogen being unidentified. In recent years, bacterial DNA sequencing analysis has garnered much attention, but clinical studies are rare in Japan. In this study, we assessed the usefulness of next-generation DNA sequencing (NGS) analysis for acute UTI patients. We thus performed an observational, retrospective case series study. Urine and blood samples were collected from ten acute UTI patients, of whom four had also been diagnosed with urosepsis. Seven variable regions of bacterial 16S rRNA genes were amplified by PCR and then sequenced by IonPGM. The identified bacterial species were compared with those identified using the culture tests and the clinical parameters were analyzed. As a result, the NGS method effectively identified predominant culture-positive bacteria in urine samples. The urine NGS also detected several culture-negative species, which have been reported to be potentially pathogenic. Out of four urosepsis cases, three were pathogen-positive in blood NGS results, while two were pathogen-negative in blood culture. In one sepsis case, although blood culture was negative for Escherichia coli, this species was detected by blood NGS. For non-sepsis cases, however, blood NGS, as well as blood culture, was less effective in detecting bacterial signals. In conclusion, NGS is potentially useful for identifying pathogenic bacteria in urine from acute UTI patients but is less applicable in patients who do not meet clinical criteria for sepsis.


Asunto(s)
ARN Ribosómico 16S/genética , Infecciones Urinarias/diagnóstico , ADN Bacteriano/genética , Pruebas Diagnósticas de Rutina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Bacteriano/genética , Estudios Retrospectivos , Infecciones Urinarias/sangre , Infecciones Urinarias/microbiología , Infecciones Urinarias/orina
19.
Clin Transl Immunology ; 8(11): e01087, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31709051

RESUMEN

OBJECTIVES: We have developed a portable system for the rapid determination of bacterial composition for the diagnosis of infectious diseases. Our system comprises of a nanopore technology-based sequencer, MinION, and two laptop computers. To examine the accuracy and time efficiency of our system, we provided a proof-of-concept for the detection of the causative bacteria of 11 meningitis patients in Zambia. METHODS: We extracted DNA from cerebrospinal fluid samples of each patient and amplified the 16S rRNA gene regions. The sequencing library was prepared, and the sequenced reads were simultaneously processed for bacterial composition determination using the minimap2 software and the representative prokaryote genomes. RESULTS: The sequencing results of four of the six culture-positive samples were consistent with those of conventional culture-based methods. The dominant bacterial species in each of these samples were identified from the sequencing data within only 3 min. Although the major bacterial species were also detected from the other two culture-positive samples and five culture-negative samples, their presence could not be confirmed. Moreover, as a whole, although the number of sequencing reads obtained within a short sequencing run was small, there was no change in the major bacterial species over time with prolonged sequencing. In addition, the processing time strongly correlated with the number of sequencing reads used for the analysis. CONCLUSION: Our results suggest that time-effective analysis could be achieved by determining the number of sequencing reads required for the rapid diagnosis of infectious bacterial species depending on the complexity of bacterial species in a sample.

20.
Virus Genes ; 55(6): 815-824, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549291

RESUMEN

Viruses are believed to be ubiquitous; however, the diversity of viruses is largely unknown because of the bias of previous research toward pathogenic viruses. Deep sequencing is a promising and unbiased approach to detect viruses from animal-derived materials. Although cranes are known to be infected by several viruses such as influenza A viruses, previous studies targeted limited species of viruses, and thus viruses that infect cranes have not been extensively studied. In this study, we collected crane fecal samples in the Izumi plain in Japan, which is an overwintering site for cranes, and performed metagenomic shotgun sequencing analyses. We detected aviadenovirus-like sequences in the fecal samples and tentatively named the discovered virus crane-associated adenovirus 1 (CrAdV-1). We determined that our sequence accounted for approximately three-fourths of the estimated CrAdV-1 genome size (33,245 bp). The GC content of CrAdV-1 genome is 34.1%, which is considerably lower than that of other aviadenoviruses. Phylogenetic analyses revealed that CrAdV-1 clusters with members of the genus Aviadenovirus, but is distantly related to the previously identified aviadenoviruses. The protein sequence divergence between the DNA polymerase of CrAdV-1 and those of other aviadenoviruses is 45.2-46.8%. Based on these results and the species demarcation for the family Adenoviridae, we propose that CrAdV-1 be classified as a new species in the genus Aviadenovirus. Results of this study contribute to a deeper understanding of the diversity and evolution of viruses and provide additional information on viruses that infect cranes, which might lead to protection of the endangered species of cranes.


Asunto(s)
Infecciones por Adenoviridae/genética , Aviadenovirus/genética , Enfermedades de las Aves/genética , Infecciones por Adenoviridae/virología , Animales , Aviadenovirus/aislamiento & purificación , Enfermedades de las Aves/virología , Aves/genética , Aves/virología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Japón , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...