Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(4): 189, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457045

RESUMEN

The importance of understanding the mercury (II) ion interactions with thymine-rich DNA sequences is the reason for multiple comparative investigations carried out with the use of optical detection techniques directly in the depth of solution. However, the results of such investigations have limited applicability in the interpretation of the Hg2+ binding phenomenon by DNA sequences in thin, interfacial (electrode/solution), self-organized monolayers immobilized on polarizable surfaces, often used for sensing purposes in electrochemical biosensors. Overlooking the careful optimization of the measurement conditions is the source of discrepancies in the interpretation of the registered electrochemical signal. In this study, the chosen effects accompanying the efficiency of surface related recognition of Hg2+ by polyThymine DNA sequences labelled with methylene blue were investigated by voltammetry, QCM and spectro-electrochemical techniques. As was shown, the composition of the biosensing layer and buffers or the analytical procedures have a significant impact on the registered electrochemical readout which translates into signal stability, the biosensor's working parameters or even the mechanism of detection. After elucidation of the above factors, the complete and ready-to-use biosensor-based analytical solution was proposed offering subpicomolar mercury ion determination with high selectivity (also in aqueous real samples), reusability, and high signal stability even after long-term storage. The developed procedures were successfully used during the miniaturization process with self-prepared (PVD) elastic transducers. The obtained sensor, together with the simplicity of its use, low manufacturing cost, and attractive analytical parameters (i.e., LOD < < Hg2+ WHO limit) can present an interesting alternative for on-site mercury ion detection in environmental samples.


Asunto(s)
Técnicas Biosensibles , Mercurio , Mercurio/química , Oro/química , Agua/química , Azul de Metileno/química , Técnicas Biosensibles/métodos
2.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447537

RESUMEN

With the increase in the popularity of wearable and integrated electronics, a proper way to manufacture electronics on textiles is needed. This study aims to analyze the effect of different parameters of the heat transfer process on the electrical and mechanical properties of flexible electronics made on textiles, presenting it as a viable method of producing such electronics. Wires made from different composites based on silver microparticles and an insulating layer were screen-printed on a release film. Then, they were transferred onto a polyester cloth using heat transfer with different parameters. Research showed that different heat transfer parameters could influence the electrical properties of screen-printed wires, changing their resistance between -15% and +150%, making it imperative to adjust those properties depending on the materials used. Changes in the settings of heat transfer also influence mechanical properties, increasing adhesion between layers at higher temperatures. This study shows the importance of tailoring heat transfer properties and the differences that these properties make.

3.
Front Mol Neurosci ; 15: 992494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187345

RESUMEN

Spinal cord injuries and neurodegenerative diseases, including Parkinson's, Alzheimer's, and traumatic brain injuries, remain challenging to treat. Nowadays, neural stem cell therapies excite high expectations within academia. The increasing demand for innovative solutions in regenerative medicine has drawn considerable attention to graphene materials. Due to unique properties, carbon materials are increasingly used as cellular scaffolds. They provide a biological microenvironment supporting cell adhesion and proliferation. The topography and mechanical properties of the graphene culture surface influence the forces exerted by the cells on their extracellular matrix. Which consequently affects the cell proliferation and differentiation. As a result, material properties such as stiffness, elasticity and mechanical strength play an important role in stem cells' growth and life. The ink unification process is crucial while the layer homogeneity is essential for obtaining suitable surface for specific cell growth. Different ink unification processes were tested to achieve appropriate layer homogeneity and resistivity to successfully applied the GNPs layers in neural cell electrostimulation. The GNP coatings were then used to electrostimulate mouse NE-4C neural stem cells. In this study, the authors investigated how the stimulation voltage amplitude's value affects cell behaviour, particularly the number of cells. Sinusoidal alternating current was used for stimulation. Three different values of stimulation voltage amplitude were investigated: 5, 10, and 15 V. It was noticed that a lower stimulation voltage amplitude had the most favourable effect on the stem cell count.

4.
Sci Rep ; 11(1): 18141, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518558

RESUMEN

Recently, low-cost electronics printed on lightweight, flexible and 3D shaped substrates are gaining importance in the markets of wearables and smart packaging. However, printed electronics do not meet the electrical performance of subtractive techniques because the resistivity of metallic printed patterns is still much higher than that of bulk material. To fulfil this need, low-resistive and easy printable inks for high resolution printed electronics techniques are needed. In this work, parameters of silver nanoparticles ink for micro-scale printed electronics technique, Aerosol Jet Printing, are being enhanced. To increase electrical conductivity and enhance printability, surfactants and dispersing agents were used to increase ultrasonic atomisation efficiency, obtain a uniform structure of printed lines, and narrow the width of printed patterns. Electrical measurements show a decrease in resistivity value in samples enhanced by cationic and non-ionic surfactants, by 95%, compared to initially prepared inks. Surfactant additions to silver nanoparticles Aerosol Jet Printing ink show promising features for application in modern electronics.

5.
Front Neurosci ; 14: 594235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192280

RESUMEN

Possible risks stemming from the employment of novel, micrometer-thin printed electrodes for direct current neural stimulation are discussed. To assess those risks, electrochemical methods are used, including cyclic voltammetry, square-wave voltammetry, and electrochemical impedance spectroscopy. Experiments were conducted in non-deoxidized phosphate-buffered saline to better emulate living organism conditions. Since preliminary results obtained have shown unexpected oxidation peaks in 0-0.4 V potential range, the source of those was further investigated. Hypothesized redox activity of printing paste components was disproven, supporting further development of proposed fabrication technology of stimulating electrodes. Finally, partial permeability and resulting electrochemical activity of underlying silver-based printed layers of the device were pointed as the source of potential tissue irritation or damage. Employing this information, electrodes with corrected design were investigated, yielding no undesired redox processes.

6.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114038

RESUMEN

Nerve regeneration through cell electrostimulation will become a key finding in regenerative medicine. The procedure will provide a wide range of applications, especially in body reconstruction, artificial organs or nerve prostheses. Other than in the case of the conventional polystyrene substrates, the application of the current flow in the cell substrate stimulates the cell growth and mobility, supports the synaptogenesis, and increases the average length of neuron nerve fibres. The indirect electrical cell stimulation requires a non-toxic, highly electrically conductive substrate material enabling a precise and effective cell electrostimulation. The process can be successfully performed with the use of the graphene nanoplatelets (GNPs)-the structures of high conductivity and biocompatible with mammalian NE-4C neural stem cells used in the study. One of the complications with the production of inks using GNPs is their agglomeration, which significantly hampers the quality of the produced coatings. Therefore, the selection of the proper amount of the surfactant is paramount to achieve a high-quality substrate. The article presents the results of the research into the material manufacturing used in the cell electrostimulation. The outcomes allow for the establishment of the proper amount of the surfactant to achieve both high conductivity and quality of the coating, which could be used not only in electronics, but also-due to its biocompatibility-fruitfully applied to the cell electrostimulation.


Asunto(s)
Grafito/química , Células-Madre Neurales/citología , Andamios del Tejido/química , Animales , Línea Celular , Movimiento Celular , Proliferación Celular , Estimulación Eléctrica , Ratones , Nanoestructuras , Medicina Regenerativa , Ingeniería de Tejidos
7.
Nanomaterials (Basel) ; 9(9)2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500251

RESUMEN

Stretchable polymer composites are a new group of materials with a wide range of application possibilities in wearable electronics. The purpose of this study was to fabricate stretchable electroluminescent (EL) structures using developed polymer compositions, based on multiple different nanomaterials: luminophore nanopowders, dielectric, carbon nanotubes, and conductive platelets. The multi-layered EL structures have been printed directly on textiles using screen printing technology. During research, the appropriate rheological properties of the developed composite pastes, and their suitability for printed electronics, have been confirmed. The structure that has been created from the developed materials has been tested in terms of its mechanical strength and resistance to washing or ironing.

8.
J AOAC Int ; 100(4): 900-904, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28623661

RESUMEN

Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix. They have been found to play a role in a wide variety of infections, including catheter-related urinary tract and bloodstream infections, and, therefore remain a significant source of morbidity and mortality among the world's population. Recently, much attention has been devoted to the prevention of biofilm formation on implant surfaces. Nanomaterials such as graphene, characterized by antibacterial activity and low toxicity to human cells, are promising candidates for biomedical applications. This study investigates the antibacterial efficiency of graphene and specially produced graphene decorated with silver nanoparticles, obtained by one of the methods of printed electronics (spray-coating system). These methods are not only economical, but also enable the printing of layers of various thicknesses on different types of materials, including flexible and nonplanar substrates. The aim of the study was to reveal the ability of graphene and graphene-nanosilver layers to prevent the formation of Staphylococcus epidermidis biofilm on the surface of a Foley catheter.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Contaminación de Equipos/prevención & control , Grafito/farmacología , Nanopartículas del Metal , Catéteres de Permanencia/microbiología , Plata , Staphylococcus epidermidis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA