Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Neurobiol ; 88: 102899, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126903

RESUMEN

Emerging therapies for Angelman syndrome, a severe neurodevelopmental disorder, are focused on restoring UBE3A gene expression in the brain. Further therapeutic opportunities may arise from a better understanding of how UBE3A gene products-both long and short isoforms of the ubiquitin ligase E3A (UBE3A)-function in neurons. Great strides have been made recently toward identifying ubiquitin substrates of UBE3A in vitro and in heterologous expression systems. From this work, a particularly close relationship between UBE3A and subunits of the 19S regulatory particle of the proteasome has become evident. We propose that further research cognizant of isoform-specific UBE3A functional roles will be instrumental in elucidating key UBE3A/substrate relationships within distinct neuronal compartments, lending to the discovery of novel therapeutic targets and valuable clinical biomarkers for the treatment of Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Neuronas , Ubiquitina-Proteína Ligasas , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Neuronas/metabolismo , Animales
3.
Exp Neurol ; 334: 113437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822706

RESUMEN

The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.


Asunto(s)
Espinas Dendríticas/metabolismo , Electroencefalografía/métodos , Hipocampo/metabolismo , Convulsiones/metabolismo , Canales de Potasio Shal/biosíntesis , Animales , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Hipocampo/citología , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Convulsiones/genética , Convulsiones/fisiopatología , Canales de Potasio Shal/genética
4.
Neurobiol Dis ; 130: 104508, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31212067

RESUMEN

Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.


Asunto(s)
Epilepsia/fisiopatología , Hipocampo/fisiopatología , MicroARNs/metabolismo , Convulsiones/fisiopatología , Canales de Potasio Shal/metabolismo , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Hipocampo/metabolismo , Ratones , MicroARNs/genética , Convulsiones/metabolismo , Canales de Potasio Shal/genética
5.
Neuropsychopharmacology ; 44(2): 324-333, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30061744

RESUMEN

Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110ß. FMRP deficiency increases p110ß protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110ß-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110ß-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110ß inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Actividad Motora/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA