Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-480845

RESUMEN

During the RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10 mediated modulation remains unclear in the absence of nsp14 structure. Here we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10 bound structures explain the modulatory role of the co-factor protein. Further, the structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477673

RESUMEN

Coronaviruses protect their single-stranded RNA genome with a methylated cap during replication. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16 where nsp10 acts as a co-factor to both. Aditionally, nsp14 carries an exonuclease domain, which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins should be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex. This interaction is expected to encourage formation of mature capped viral mRNA, modulating the nsp14s exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-473268

RESUMEN

The Omicron variant of the SARS-CoV-2 virus was first detected in South Africa in November 2021. The analysis of the sequence data in the context of earlier variants suggested that it may show very different characteristics, including immune evasion and increased transmission. These assumptions were partially confirmed, and the reduction in protection in convalescent patients and vaccinated individuals have been confirmed. Here, we have evaluated the efficacy of antivirals against SARS-CoV-2 variants, Omicron, Delta, and the early 2020 isolate.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-436259

RESUMEN

SO_SCPLOWUMMARYC_SCPLOWThe COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identified acriflavine as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433713

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 started in fall 2019. A range of different mammalian species, including farmed mink, have been confirmed as susceptible to infection with this virus. We report here the spillover of mink-adapted SARS-CoV-2 from farmed mink to humans after extensive adaptation that lasted at least 3 months. We found the presence of four mutations in the S gene (that gave rise to variant: G75V, M177T, Y453F and C1247F) and others in an isolate obtained from SARS-CoV-2 positive patient.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-425793

RESUMEN

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-413609

RESUMEN

There are currently no cures for coronavirus infections, making the prevention of infections the only course open at the present time. The COVID-19 pandemic has been difficult to prevent, as the infection is spread by respiratory droplets and thus effective, scalable and safe preventive interventions are urgently needed. We hypothesise that preventing viral entry into mammalian nasal epithelial cells may be one way to limit the spread of COVID-19. Here we show that N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ), a positively charged polymer that has been through an extensive Good Laboratory Practice toxicology screen, is able to reduce the infectivity of SARS-COV-2 in A549ACE2+ and Vero E6 cells with a log removal value of -3 to -4 at a concentration of 10 - 100 g/ mL (p < 0.05 compared to untreated controls) and to limit infectivity in human airway epithelial cells at a concentration of 500 g/ mL (p < 0.05 compared to untreated controls). GCPQ is currently being developed as a pharmaceutical excipient in nasal and ocular formulations. GCPQs electrostatic binding to the virus, preventing viral entry into the host cells, is the most likely mechanism of viral inhibition. Radiolabelled GCPQ studies in mice show that at a dose of 10 mg/ kg, GCPQ has a long residence time in mouse nares, with 13.1% of the injected dose identified from SPECT/CT in the nares, 24 hours after nasal dosing. With a no observed adverse effect level of 18 mg/ kg in rats, following a 28-day repeat dose study, clinical testing of this polymer, as a COVID-19 prophylactic is warranted.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-257360

RESUMEN

SARS-CoV-2 genome annotation revealed the presence of 10 open reading frames (ORFs), of which the last one (ORF10) is positioned downstream the N gene. It is a hypothetical gene, which was speculated to encode a 38 aa protein. This hypothetical protein does not share sequence similarity with any other known protein and cannot be associated with a function. While the role of this ORF10 was proposed, there is a growing evidence showing that the ORF10 is not a coding region. Here, we identified SARS-CoV-2 variants in which the ORF10 gene was prematurely terminated. The disease was not attenuated, and the transmissibility between humans was not hampered. Also in vitro, the strains replicated similarly, as the related viruses with the intact ORF10. Altogether, based on clinical observation and laboratory analyses, it appears that the ORF10 protein is not essential in humans. This observation further proves that the ORF10 should not be treated as the protein-coding gene, and the genome annotations should be amended.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-267997

RESUMEN

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race towards the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. 2020 and Iwasaki et al. 2020. All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-014183

RESUMEN

The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the healthcare measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of previously developed by us HTCC compound (N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride), which may be used as potential inhibitor of currently circulating highly pathogenic coronaviruses - SARS-CoV-2 and MERS-CoV.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-999029

RESUMEN

SARS-CoV-2 emerged by the end of 2019 to rapidly spread in 2020. At present, it is of utmost importance to understand the virus biology and to rapidly assess the potential of existing drugs and develop new active compounds. While some animal models for such studies are under development, most of the research is carried out in the Vero E6 cells. Here, we propose fully differentiated human airway epithelium cultures as a model for studies on the SARS-CoV-2. Further, we also provide basic characteristics of the system.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-971499

RESUMEN

Human coronavirus HKU1 (HCoV-HKU1) is associated with respiratory disease and is prevalent worldwide, but in vitro model for virus replication is lacking. Interaction between the coronaviral spike (S) protein and its receptor is the major determinant of virus tissue and host specificity, but virus entry is a complex process requiring a concerted action of multiple cellular elements. Here, we show that KLK13 is required for the infection of the human respiratory epithelium and is sufficient to mediate the entry of HCoV-HKU1 to non-permissive RD cells. We also demonstrated HCoV-HKU1 S protein cleavage by KLK13 in the S1/S2 region, proving that KLK13 is the priming enzyme for this virus. Summarizing, we show for the first time that protease distribution and specificity predetermines the tissue and cell specificity of the virus and may also regulate interspecies transmission. It is also of importance that presented data may be relevant for the emerging coronaviruses, including SARS-CoV-2 and may help to understand the differences in their zoonotic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...