Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Photochem Photobiol ; 98(5): 1110-1121, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35067943

RESUMEN

Chronic exposure of the retina to short wavelength visible light is a risk factor in pathogenesis of age-related macular degeneration. The proper functioning and survival of photoreceptors depends on efficient phagocytosis of photoreceptor outer segments (POS) by retinal pigment epithelium. The purpose of this study was to analyze the phagocytic activity of blue light-treated ARPE-19 cells, and to examine whether the observed effects could be related to altered levels of POS phagocytosis receptor proteins and/or to oxidation of cellular proteins and lipids. POS phagocytosis was measured by flow cytometry. Phagocytosis receptor proteins αv and ß5 integrin subunits and Mer tyrosine kinase (MerTK) were quantified by western blotting. The intact functional heterodimer αvß5 was quantified by immunoprecipitation followed by immunoblotting. Cellular protein and lipid hydroperoxides were analyzed by coumarin boronic acid probe and iodometric assay, respectively. Cell irradiation induced reversible inhibition of specific phagocytosis and transient reductions in phagocytosis receptor proteins. Full recovery of functional heterodimer was apparent. Significant photooxidation of cellular proteins and lipids was observed. The results indicate that transient inhibition of specific phagocytosis by blue light could be related to the reduction in phagocytosis receptor proteins. Such changes may arise from oxidative modifications of cell phagocytic machinery components.


Asunto(s)
Luz , Epitelio Pigmentado de la Retina , Ácidos Borónicos/metabolismo , Ácidos Borónicos/farmacología , Cumarinas , Lípidos , Epitelio Pigmentado de la Retina/metabolismo , Tirosina Quinasa c-Mer/metabolismo
2.
Photochem Photobiol ; 97(5): 1136-1144, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33977551

RESUMEN

Melanopsin, a member of the G protein-coupled receptors family, is involved in non-image-forming functions including circadian rhythm, sleep regulation and pupil response. In spite of significant research efforts, the signaling cascade involving melanopsin photoactivation remains poorly characterized. Here, we analyzed the effects of photoactivation of melanopsin on phospholipase C (PLC) and diacylglycerol. As an in vitro model, HEK293 cells with stable expression of human melanopsin were used. Although both the PLCß1 and PLCß4 subtypes were activated by the cell exposure to blue light, only PLCß4 appeared to play a significant role in the studied melanopsin signaling pathway. We have demonstrated, for the first time, that cells expressing human melanopsin and enriched with 11-cis-retinal exhibited significantly increased diacylglycerol level. To determine the role of phospholipase C and involvement of diacylglycerols, two approaches were employed: inhibition of the G protein and phospholipase C (using the BIM-46187 and U73122 inhibitors, respectively), and gene silencing using siRNA of PLCß1 and PLCß4 . While silencing the PLCß4 gene and using U73122 inhibited the diacylglycerol and calcium ion responses, the FOS gene expression level was only partially reduced. These results may facilitate a better understanding of the role of phospholipase C and diacylglycerols in the melanopsin signaling pathway.


Asunto(s)
Diglicéridos , Opsinas de Bastones , Células HEK293 , Humanos , Luz , Fosfolipasa C beta/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Transducción de Señal
3.
Pigment Cell Melanoma Res ; 34(4): 670-682, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702137

RESUMEN

Aging may significantly modify antioxidant and photoprotective properties of melanin in retinal pigment epithelium (RPE). Here, photoreactivity of melanosomes (MS), isolated from younger and older human donors with and without added zeaxanthin and α-tocopherol, was analyzed by electron paramagnetic resonance oximetry, time-resolved singlet oxygen phosphorescence, and protein oxidation assay. The phototoxic potential of ingested melanosomes was examined in ARPE-19 cells exposed to blue light. Phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was determined by flow cytometry. Irradiation of cells fed MS induced significant inhibition of the specific phagocytosis with the effect being stronger for melanosomes from older than from younger human cohorts, and enrichment of the melanosomes with antioxidants reduced the inhibitory effect. Cellular protein photooxidation was more pronounced in samples containing older melanosomes, and it was diminished by antioxidants. This study suggests that blue light irradiated RPE melanosomes could induce substantial inhibition of the key function of the cells-their specific phagocytosis. The data indicate that while photoreactivity of MS and their phototoxic potential increase with age, they could be reduced by selected natural antioxidants.


Asunto(s)
Antioxidantes/farmacología , Senescencia Celular/efectos de la radiación , Luz , Melanosomas/patología , Melanosomas/efectos de la radiación , Adolescente , Adulto , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular , Senescencia Celular/efectos de los fármacos , Humanos , Luminiscencia , Melanosomas/efectos de los fármacos , Persona de Mediana Edad , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Donantes de Tejidos , Adulto Joven
4.
Photochem Photobiol Sci ; 19(8): 1022-1034, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32588871

RESUMEN

Although the primary biological function of retina photoreceptors is to absorb light and provide visual information, exposure to intense light could increase the risk of phototoxic reactions mediated by rhodopsin photobleaching products (RPBP) that might accumulate in photoreceptor outer segments (POS). Here we investigated whether quercetin can modify the phototoxic potential of RPBP under in vitro photic stress conditions. ARPE-19 cells or quercetin enriched cultures pre-loaded with rhodopsin-rich POS isolated from bovine retinas were irradiated with green light to photobleach rhodopsin, and subsequently with blue light. Survival of cells was determined by MTT assay and propidium iodide staining. Changes in mitochondrial membrane potential (MMP) were assessed by JC-1 staining. Protein hydroperoxides, formed by photosensitized oxidation, mediated by RPBP, were analyzed in cells and in a model system with bovine serum albumin (BSA), using the coumarin boronic acid fluorogenic probe. The effect of photic stress on specific phagocytosis of RPE cells was determined by flow cytometry. Photoreactivity of POS with and without quercetin was analyzed by EPR oximetry and EPR spin trapping. Cytotoxicity measurements and MMP analyses confirmed that supplementation with quercetin protected ARPE-19 cells against photic stress mediated by rhodopsin-rich POS. Quercetin significantly reduced the inhibitory effect of RPBP-mediated stress on POS phagocytosis and the RPBP ability to photooxidize cellular proteins or BSA. The data support the hypothesis that quercetin may efficiently diminish the phototoxic action of retinoids, necessary for restoring the phagocytic function of ARPE-19 cells.


Asunto(s)
Antioxidantes/farmacología , Fotoblanqueo/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Quercetina/farmacología , Rodopsina/biosíntesis , Línea Celular , Humanos , Estrés Oxidativo/efectos de los fármacos , Fagocitosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA