Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 92(1): 44-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37553948

RESUMEN

The activation or inactivation of B-cell lymphoma-2 (Bcl-2) antagonist/killer (Bak) is critical for controlling mitochondrial outer membrane permeabilization-dependent apoptosis. Its pro-apoptotic activity is controlled by intermolecular interactions with the Bcl-2 homology 3 (BH3) domain, which is accommodated in the hydrophobic pocket of Bak. Bcl-2-interacting protein 5 (Bnip5) is a noncanonical BH3 domain-containing protein that interacts with Bak. Bnip5 is characterized by its controversial effects on the regulation of the pro-apoptotic activity of Bak. In the present study, we determined the crystal structure of Bak bound to Bnip5 BH3. The intermolecular association appeared to be typical at first glance, but we found that it is maintained by tight hydrophobic interactions together with hydrogen/ionic bonds, which accounts for their high binding affinity with a dissociation constant of 775 nM. Structural analysis of the complex showed that Bnip5 interacts with Bak in a manner similar to that of the Bak-activating pro-apoptotic factor peroxisomal testis-enriched protein 1, particularly in the destabilization of the intramolecular electrostatic network of Bak. Our structure is considered to reflect the initial point of drastic and consecutive conformational and stoichiometric changes in Bak induced by Bnip5 BH3, which helps in explaining the effects of Bnip5 in regulating Bak-mediated apoptosis.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Dominios Proteicos , Proteína bcl-X/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Apoptosis/fisiología
2.
Front Psychiatry ; 14: 1251884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025430

RESUMEN

This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.

3.
Commun Biol ; 6(1): 1214, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030679

RESUMEN

The N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Ubiquitina/metabolismo , Unión Proteica , Aminoácidos/metabolismo
4.
J Microbiol ; 61(8): 755-764, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37684534

RESUMEN

Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.


Asunto(s)
Virus del Papiloma Humano , Infecciones por Papillomavirus , Humanos , Proteínas de la Cápside/genética , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Quinasa Tipo Polo 1
6.
Commun Biol ; 6(1): 712, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433832

RESUMEN

Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.


Asunto(s)
Centriolos , Centrosoma , Proteínas Serina-Treonina Quinasas , Humanos , Ciclo Celular , Peso Molecular , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo
7.
PLoS Biol ; 21(6): e3002156, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37315086

RESUMEN

Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Masculino , Apoptosis/fisiología , Proteína X Asociada a bcl-2 , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo
8.
Curr Protein Pept Sci ; 24(4): 296-306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36918780

RESUMEN

Anti-apoptotic and anti-autophagic Bcl-2 homologues commonly contain a hydrophobic groove in which the BH3 domain is accommodated. The BH3 domain is usually considered a feature of Bcl-2 family members; however, it has also been found in various non-Bcl-2 family proteins. Although interactions among Bcl-2 family members have been extensively investigated and highlighted, those mediated by the BH3 domain of non-Bcl-2 family proteins have not been the focus of substantial research. In this review, the author conducted a structural analysis of Bcl-xL complexed with the BH3 domain of four non-Bcl-2 family proteins, Beclin 1, SOUL, TCTP, and Pxt1, at an atomic level. Although the overall Bcl-xL-binding modes are similar among these proteins, they are characterized by limited sequence conservation of the BH3 consensus motif and differences in residues involved in complex formation. Based on the structural analysis, the author suggests that more "undiscovered" BH3 domain-containing proteins might exist, which have been unidentified due to their limited sequence conservation but can bind to Bcl-2 family proteins and control apoptosis, autophagy, or other biological processes.


Asunto(s)
Apoptosis , Proteína bcl-X/genética , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Modelos Moleculares , Dominios Proteicos
9.
Front Chem ; 11: 1133018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936532

RESUMEN

O-GlcNAc modification of proteins often has crosstalk with protein phosphorylation. These posttranslational modifications are highly dynamic events that modulate a wide range of cellular processes. Owing to the physiological and pathological significance of protein O-GlcNAcylation and phosphorylation, we designed the fluorescent probe, ßGlcNAc-CM-Rhod-P, to differentially detect activities of O-GlcNAcase (OGA) and phosphatase, enzymes that are responsible for these modifications. ßGlcNAc-CM-Rhod-P was comprised of a ßGlcNAc-conjugated coumarin (ßGlcNAc-CM) acting as an OGA substrate, a phosphorylated rhodol (Rhod-P) as a phosphatase substrate and a piperazine bridge. Because the emission wavelength maxima of CM and Rhod liberated from the probe are greatly different (100 nm), spectral interference is avoided. The results of this study revealed that treatment of ßGlcNAc-CM-Rhod-P with OGA promotes formation of the GlcNAc-cleaved probe, CM-Rhod-P, and a consequent increase in the intensity of fluorescence associated with free CM. Also, it was found that exposure of the probe to phosphatase produces a dephosphorylated probe, ßGlcNAc-CM-Rhod, which displays strong fluorescence arising from free Rhod. On the other hand, when incubated with both OGA and phosphatase, ßGlcNAc-CM-Rhod-P was converted to CM-Rhod which lacked both ßGlcNAc and phosphoryl groups, in conjunction with increases in the intensities of fluorescence arising from both free CM and Rhod. This probe was employed to detect activities of OGA and phosphatase in cell lysates and to fluorescently image both enzymes in cells. Collectively, the findings indicate that ßGlcNAc-CM-Rhod-P can be utilized as a chemical tool to simultaneously determine activities of OGA and phosphatase.

10.
Cell Death Dis ; 14(3): 228, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36990977

RESUMEN

Influenza virus is one of the most challenging viruses threating human health. Since infection with influenza virus triggers inflammatory responses and induces cell death, the molecular and cellular mechanisms by which the virus-infected cells undergo apoptotic and necrotic cell death have been widely studied. However, most of the studies have focused on the molecular events occurring in the cytosol and there is limited information on the physiological correlation between virus-induced cell death and the viral pathogenesis in vivo. In this study, we demonstrate that the influenza virus matrix 1 (M1) protein is released from virus-infected cells and triggers apoptotic cell death of lung epithelial and pulmonary immune cells, through the activation of Toll-like receptor 4 (TLR4) signaling. Treatment with M1 protein led to robust cellular inflammatory responses, such as the production of proinflammatory cytokines and cellular reactive oxygen species (ROS), and induction of cell death. When M1 protein was administered in vivo, it induced the activation of inflammatory responses and cell death in the lungs. Furthermore, the administration of M1 aggravated lung pathology and mortality of the virus-infected mice in a TLR4-dependent manner. These results demonstrate that M1 is an important pathogenic factor contributing to influenza virus pathogenicity by enhancing cell death in the lungs, thereby expanding our understanding of the molecular mechanism of influenza virus-induced cell death through the interaction with an innate immune receptor.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Apoptosis , Especies Reactivas de Oxígeno , Receptor Toll-Like 4/genética , Virulencia , Proteínas Virales/metabolismo
11.
Res Sq ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993381

RESUMEN

Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. X-linked ID (XLID) disorders, caused by defects in genes on the X chromosome, affect 1.7 out of 1,000 males. Employing exome sequencing, we identified three missense mutations (c.475C>G; p.H159D, c.1373C>A; p.T458N, and c.1585G>A; p.E529K) in the SRPK3 gene in seven XLID patients from three independent families. Clinical features common to the patients are intellectual disability, agenesis of the corpus callosum, abnormal smooth pursuit eye movement, and ataxia. SRPK proteins are known to be involved in mRNA processing and, recently, synaptic vesicle and neurotransmitter release. In order to validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. In day 5 of larval stage, KO zebrafish showed significant defects in spontaneous eye movement and swim bladder inflation. In adult KO zebrafish, we found agenesis of cerebellar structures and impairments in social interaction. These results suggest an important role of SRPK3 in eye movements, which might reflect learning problems, intellectual disability, and other psychiatric disorders.

12.
Biochem Biophys Res Commun ; 625: 174-180, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964379

RESUMEN

Antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins suppress apoptosis by interacting with proapoptotic regulators. They commonly contain a hydrophobic groove where the Bcl-2 homology 3 (BH3) domain of Bcl-2 family members or BH3 domain-containing non-Bcl-2 family proteins can be accommodated. Peroxisomal testis-specific 1 (Pxt1) was previously identified as a male germ cell-specific protein whose overexpression causes germ cell apoptosis and infertility in male mice. Sequence and biochemical analyses also showed that human Pxt1, which is composed of 134 amino acids and is longer than mouse Pxt1 consisting of only 51 amino acids, has a BH3 domain that interacts with antiapoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL. In this study, we determined the crystal structure of Bcl-xL bound to the human Pxt1 BH3 domain. The five BH3 consensus residues are well conserved in the human Pxt1 BH3 domain and make a critical contribution to the complex formation in a canonical manner. Structural and biochemical analyses also demonstrated that Bcl-xL interacts with the BH3 domain of human Pxt1 but not with that of mouse Pxt1, and that residues 76-83 of human Pxt1, absent in mouse Pxt1, play a pivotal role in the intermolecular binding to Bcl-xL. While Bcl-xL consistently colocalized with human Pxt1 in mitochondria, it did not do so with mouse Pxt1, when expressed in HeLa cells. Collectively, these data verified that human and mouse Pxt1 differ in their binding ability to the antiapoptotic regulator Bcl-xL, which might affect their functionality in controlling apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Testículo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Testículo/metabolismo , Proteína bcl-X/metabolismo
13.
J Microbiol ; 60(4): 395-401, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35089587

RESUMEN

High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.


Asunto(s)
Alphapapillomavirus , Proteínas Oncogénicas Virales , Papillomaviridae , Proteína Tirosina Fosfatasa no Receptora Tipo 4 , Proteínas Represoras , Alphapapillomavirus/química , Alphapapillomavirus/metabolismo , Humanos , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Dominios PDZ , Papillomaviridae/metabolismo , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 4/química , Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo
14.
J Microbiol ; 59(4): 410-416, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33630249

RESUMEN

Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central ß-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.


Asunto(s)
Dineínas Citoplasmáticas/química , Ebolavirus/química , Proteínas de la Nucleocápside/química , Secuencia de Aminoácidos , Calorimetría , Simulación por Computador , Cristalización , Cristalografía por Rayos X , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas Virales/química , Factores de Virulencia/química
15.
Mol Cells ; 44(1): 26-37, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33431714

RESUMEN

Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.


Asunto(s)
Alphapapillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Genotipo , Humanos , Modelos Moleculares , Invasividad Neoplásica , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteolisis
16.
Hum Mol Genet ; 30(5): 331-342, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33517449

RESUMEN

Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.


Asunto(s)
Factor 2B Eucariótico de Iniciación/genética , Regulación del Desarrollo de la Expresión Génica , Leucoencefalopatías/genética , Vaina de Mielina/genética , Neovascularización Fisiológica , Pez Cebra/genética , Pez Cebra/metabolismo , Alelos , Animales , Diferenciación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/química , Femenino , Técnicas de Inactivación de Genes , Humanos , Lactante , Leucoencefalopatías/metabolismo , Modelos Moleculares , Vaina de Mielina/metabolismo , Neovascularización Fisiológica/genética , Conformación Proteica , Eliminación de Secuencia , Estrés Fisiológico , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Mol Cells ; 43(12): 1035-1045, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33372666

RESUMEN

The Drosophila genome contains four low molecular weightprotein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Proteínas de Drosophila/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatasas/metabolismo , Relación Estructura-Actividad
18.
J Biol Chem ; 295(39): 13677-13690, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759168

RESUMEN

Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.


Asunto(s)
Astrocitos/metabolismo , Factores de Transcripción Paired Box/metabolismo , Factor de Transcripción SOX9/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Factores de Transcripción Paired Box/genética , Factor de Transcripción SOX9/genética
19.
Sci Rep ; 10(1): 10755, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612143

RESUMEN

Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson' disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson's disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1's mediated inflammation signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inflamación/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Línea Celular , Cromatina/química , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Humanos , Intrones , Lipopolisacáridos/química , Ratones , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
20.
Mol Cell Biol ; 40(10)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32152252

RESUMEN

Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/análisis , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Nucleares/análisis , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...