Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Rep ; 23(1): 188-193, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30325253

RESUMEN

OBJECTIVES: A number of studies have suggested that acrolein-induced lung injury and pulmonary diseases are associated with the depletion of antioxidants and the production of reactive oxygen species. Therefore, compounds that scavenge reactive oxygen species may exert protective effects against acrolein-induced apoptosis. Because hesperetin, a natural flavonoid, has been reported to have an antioxidant activity, we investigated the effect of hesperitin against acrolein-induced apoptosis of lung cells. METHODS: We evaluated the protective role of hesperetin in acrolein-induced lung injury using Lewis lung carcinoma (LLC) cells and mice. RESULTS: Upon exposure of LLC cells and mice to acrolein, hesperetin ameliorated the lung inbjury through attenuation of oxidative stress. CONCLUSION: In the present report, we demonstrate that hesperetin exhibits a protective effect against acrolein-induced apoptosis of lung cells in both in vitro and in vivo models. Our study provides a useful model to investigate the potential application of hesperetin for the prevention of lung diseases associated with acrolein toxicity.


Asunto(s)
Acroleína/farmacología , Apoptosis/efectos de los fármacos , Hesperidina/farmacología , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
J Nutr Biochem ; 59: 10-16, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29957300

RESUMEN

Acrolein (2-propenal) is ubiquitous in the environment and connections exist between acrolein exposure and lung cancer risk. Here we investigated the effects of naringin on acrolein induced-lung injuries in mice. Male C57BL/6 mice were allocated into four groups: Vehicle group (no acrolein), Naringin only group (80 mg of naringin/kg bw + no acrolein), Acrolein group (ACR group; acrolein), and Naringin + Acrolein group (NAG+ACR group; 80 mg of naringin/kg bw and acrolein). The mice were subjected acute acrolein inhalation (10 ppm for 12 h) in an inhalation chamber and naringin was intraperitoneally administered to the mice one hour before acrolein exposure. The results demonstrated that, in the NAG+ACR group, pulmonary injuries (e.g., airspace enlargement, lung inflammation) were all significantly improved compared to the ACR group. Further, key markers of MAPK signaling (e.g., p-p38, p-JNK), p53 signaling markers (e.g., p-Chk2, p53), NF-κB signaling axis (e.g., IL-1 ß, TNF-α), and oxidative damage markers (e.g. , GSSG: GSH ratio, oxidative DNA damage) were all effectively mitigated by the naringin treatment. Naringin provided protection against the environmental toxicant, acrolein, in mice lung via modulating MAPK, p53, and NF-κB signaling pathways and our data may provide significant implications considering the prevalence of acrolein.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavanonas/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/prevención & control , Neumonía/metabolismo , Acroleína/toxicidad , Animales , Apoptosis/fisiología , Biomarcadores/metabolismo , Citocinas/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neumonía/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
3.
Sci Rep ; 8(1): 9464, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930336

RESUMEN

Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.


Asunto(s)
Antioxidantes/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Flavanonas/uso terapéutico , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Antioxidantes/farmacología , Cardiomegalia/etiología , Línea Celular , Azúcares de la Dieta/efectos adversos , Flavanonas/farmacología , Fructosa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Biochem Biophys Res Commun ; 503(2): 798-802, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29913148

RESUMEN

Acute lung injury (ALI) is an acute failure of the respiratory system with unacceptably high mortality, for which effective treatment is urgently necessary. Infiltrations by immune cells, such as leukocytes and macrophages, are responsible for the inflammatory response in ALI, which is characterized by excessive production of pro-inflammatory mediators in lung tissues exposed to various pathogen-associated molecules such as lipopolysaccharide (LPS) from microbial organisms. α-Ketoglutarate (α-KG) is a key metabolic intermediate and acts as a pro-inflammatory metabolite, which is responsible for LPS-induced proinflammatory cytokine production through NF-κB signaling pathway. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) has been reported as an essential enzyme catalyzing the conversion of isocitrate to α-KG with concurrent production of NAPDH. Therefore, we evaluated the role of IDH2 in LPS-induced ALI using IDH2-deficient mice. We observed that LPS-induced inflammation and lung injury is attenuated in IDH2-deficient mice, leading to a lengthened life span of the mice. Our results also suggest that IDH2 disruption suppresses LPS-induced proinflammatory cytokine production, resulting from an inhibition of the NF-κB signaling axis in an α-KG-dependent manner. In conclusion, disruption of IDH2 leads to a decrease in α-KG levels, and the activation of NF-κB in response to LPS is attenuated by reduction of α-KG levels, which eventually reduces the inflammatory response in the lung during LPS-induced ALI. The present study supports the rationale for targeting IDH2 as an important therapeutic strategy for the treatment of systemic inflammatory response syndromes, particularly ALI.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Isocitrato Deshidrogenasa/inmunología , Ácidos Cetoglutáricos/inmunología , Lipopolisacáridos/inmunología , Neumonía/inmunología , Lesión Pulmonar Aguda/genética , Animales , Técnicas de Inactivación de Genes , Isocitrato Deshidrogenasa/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/inmunología , Neumonía/genética
5.
Redox Biol ; 17: 16-24, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29660504

RESUMEN

Melanogenesis is a complex biosynthetic pathway regulated by multiple agents, which are involved in the production, transport, and release of melanin. Melanin has diverse roles, including determination of visible skin color and photoprotection. Studies indicate that melanin synthesis is tightly linked to the interaction between melanocytes and keratinocytes. α-melanocyte-stimulating hormone (α-MSH) is known as a trigger that enhances melanin biosynthesis in melanocytes through paracrine effects. Accumulated reactive oxygen species (ROS) in skin affects both keratinocytes and melanocytes by causing DNA damage, which eventually leads to the stimulation of α-MSH production. Mitochondria are one of the main sources of ROS in the skin and play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Therefore, mitochondrial dysfunction may serve as a key for the pathogenesis of skin melanogenesis. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. Downregulation of IDH2 expression resulted in an increase in oxidative DNA damage in mice skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also promoted pigmentation on the dorsal skin of mice, as evident from the elevated levels of melanin synthesis markers. Furthermore, pretreatment with mitochondria-targeted antioxidant mito-TEMPO alleviated oxidative DNA damage and melanogenesis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in skin melanogenesis in association with mitochondrial ROS and suggest unique therapeutic strategies for the prevention of skin pigmentation.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Estrés Oxidativo/genética , Pigmentación de la Piel/genética , Animales , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Melaninas/genética , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organofosforados/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Piperidinas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , alfa-MSH/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1138-1147, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29391208

RESUMEN

Isocitrate dehydrogenase 2 (IDH2) is a key enzyme that maintains the balance of mitochondrial redox status by generating NADPH as a reducing factor, which is used to reduce oxidized antioxidant proteins and oxidized glutathione. Therefore, the role of IDH2 is crucial in organs that are easily influenced by reactive oxygen species (ROS) or mechanical damage. Humans are constantly exposed to ultraviolet (UV) radiation throughout their lifetime, which can cause various cutaneous diseases, such skin carcinoma, dermatitis, and sunburn. ROS play an important role in the initial step of these diseases; therefore, IDH2 deficient mice (Idh2-/-) could be a useful model to investigate UV-mediated skin damage. When we exposed the dorsal skin of Idh2-/- mice to UVB, pyrimidine dimers and (6-4) photoproducts (6-4PPs), marker of photoproducts generated by UVB, were found in the dermis of the knockout mice. Increased collagen degradation, apoptosis, inflammation, and ROS levels in the dermis were also observed. These results indicated that UVB could reach the dermis by penetrating the epidermis. We then attempted to determine how the epidermis was breached, and observed a decrease in the expression level of ΔNp63, a major protein required for epidermis generation, in the Idh2-/- mice. The mito-TEMPO supplement significantly ameliorates UVB-induced damage in the skin of Idh2-/- mice. In the present study, we provided a role for IDH2 in protection against UVB-induced skin damage and a new connection between IDH2 and ΔNp63.


Asunto(s)
Dermis/metabolismo , Epidermis/metabolismo , Isocitrato Deshidrogenasa/deficiencia , Fosfoproteínas/metabolismo , Trastornos por Fotosensibilidad/metabolismo , Transactivadores/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Dermis/patología , Epidermis/patología , Masculino , Ratones , Ratones Noqueados , Compuestos Organofosforados/farmacología , Fosfoproteínas/genética , Trastornos por Fotosensibilidad/tratamiento farmacológico , Trastornos por Fotosensibilidad/genética , Trastornos por Fotosensibilidad/patología , Piperidinas/farmacología , Transactivadores/genética
7.
Biochem Biophys Res Commun ; 493(1): 34-39, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28928092

RESUMEN

The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2-/-) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2-/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2-/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Isocitrato Deshidrogenasa/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Isocitrato Deshidrogenasa/genética , Esperanza de Vida , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Tasa de Supervivencia
8.
Redox Rep ; 22(1): 35-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26865387

RESUMEN

OBJECTIVES: Reactive oxygen species-mediated cell death contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. We recently showed that mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. METHODS: In the present study, we demonstrated that H2O2-induced apoptosis and hypertrophy of H9c2 cardiomyoblasts was markedly exacerbated by small interfering RNA (siRNA) specific for IDH2. RESULTS: Attenuated IDH2 expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. MitoTEMPO, a mitochondria-targeted antioxidant, efficiently suppressed increased caspase-3 activity, increased cell size, and depletion of cellular GSH levels in IDH2 siRNA-transfected cells that were treated with H2O2. DISCUSSION: These results indicated that the disruption of cellular redox balance might be responsible for the enhanced H2O2-induced apoptosis and hypertrophy of cultured cardiomyocytes by the attenuated IDH2 expression.


Asunto(s)
Muerte Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Isocitrato Deshidrogenasa/metabolismo , Animales , Muerte Celular/genética , Línea Celular , Hipertrofia/metabolismo , Hipertrofia/patología , Isocitrato Deshidrogenasa/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , ARN Interferente Pequeño , Ratas
9.
Oxid Med Cell Longev ; 2017: 1595103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29456784

RESUMEN

Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2-deficient (idh2-/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2-/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.


Asunto(s)
Isocitrato Deshidrogenasa/metabolismo , Lesión Pulmonar/metabolismo , Mitocondrias/metabolismo , Acetilcisteína/metabolismo , Acroleína/toxicidad , Animales , Carcinoma Pulmonar de Lewis , Isocitrato Deshidrogenasa/genética , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , ARN Interferente Pequeño/genética
10.
Redox Biol ; 10: 211-220, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27810736

RESUMEN

Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF), secreted by the retinal pigment epithelium (RPE), in pathological angiogenesis and the development of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA) is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH), which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS). Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Degeneración Macular/tratamiento farmacológico , Oxalatos/administración & dosificación , Epitelio Pigmentado de la Retina/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Ratones , Oxalatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
11.
Free Radic Res ; 50(10): 1089-1097, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27087448

RESUMEN

Although reactive oxygen species (ROS) work as second messengers at sublethal concentrations, higher levels of ROS can kill cancer cells. Since cellular ROS levels are determined by a balance between ROS generation and removal, the combination of ROS generators, and the depletion of reducing substances greatly enhance ROS levels. Emodin (1,3,8-trihydroxy-6-methyl anthraquinone), a natural anthraquinone derivative from the root and rhizome of numerous plants, is a ROS generator that induces apoptosis in cancer cells. The major enzyme to generate mitochondrial NADPH is the mitochondrial isoenzyme of NADP+-dependent isocitrate dehydrogenase (IDH2). In this report, we demonstrate that IDH2 knockdown effectively enhances emodin-induced apoptosis of mouse melanoma B16F10 cells through the regulation of ROS generation. Our findings suggest that suppression of IDH2 activity results in perturbation of the cellular redox balance and, ultimately, exacerbate emodin-induced apoptotic cell death in B16F10 cells. Our results strongly support a therapeutic strategy in the management of cancer that alters the intracellular redox status by the combination of a ROS generator and the suppression of antioxidant enzyme activity.


Asunto(s)
Emodina/efectos adversos , Isocitrato Deshidrogenasa/metabolismo , Neoplasias/etiología , Animales , Apoptosis , Línea Celular Tumoral , Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno
12.
Free Radic Biol Med ; 80: 84-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557279

RESUMEN

Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2(-/-)) and wild-type (idh2(+/+)) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.


Asunto(s)
Cardiomegalia/genética , Insuficiencia Cardíaca/genética , Isocitrato Deshidrogenasa/genética , Miocardio/enzimología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Cardiomegalia/complicaciones , Cardiomegalia/enzimología , Cardiomegalia/patología , Expresión Génica , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Isocitrato Deshidrogenasa/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/patología , Datos de Secuencia Molecular , Contracción Miocárdica , Miocardio/patología , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Biochim Biophys Acta ; 1842(2): 135-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24240089

RESUMEN

The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.


Asunto(s)
Carcinogénesis/genética , Isocitrato Deshidrogenasa/genética , Proteínas Mitocondriales/genética , Carga Tumoral/genética , Animales , Carcinogénesis/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Isocitrato Deshidrogenasa/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...